Foundations and trends in analytics and marketing relationship

Autores/as

DOI:

https://doi.org/10.5585/remark.v20i1.17554

Palabras clave:

Bibliometric, Analytics, Marketing, Capabilities

Resumen

Purpose: The purpose of this paper is to pave the path for further quantitative research in the field of analytics in marketing based on capabilities literature, it analyzed state of the art about Analytics and Marketing in the context of Resource-Based View and capabilities literature.

Design/methodology/approach: It is a bibliometric and an applied review that shows the relationship between the subfields. We used some cluster analyses to provide a scheme for tracking this literature intersection for beginners and experienced researchers.

Findings: After the adaptive analytics capabilities proposition, the paper is concluded with a discussion of pathways in Marketing and Strategy literature indicating possible endogenous, exogenous, and covariate constructs for moderation/mediation mechanism studies agenda.

Research implications: It was developed a nomological network for construct choice process aiming for future studies of the emerging relationship between Marketing, Analytics, and Capabilities using updated and relevant constructs references.

Originality/value: From the foundations of Analytics and Marketing intersection, we gave objective trends and constructs to develop a future agenda that can intertwine the subfields using the power of dynamic capabilities literature.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alamir Costa Louro, Universidade Federal do Espírito Santo – UFES

Ph.D In Business Administration

Marcelo Moll Brandão, Universidade Federal do Espírito Santo, UFES, Brasil.

Ph.D In Business Administration

Arthur França Sarcinelli, Universidade Federal do Espírito Santo, UFES, Brasil.

Master In Business Administration

Citas

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007.

Barney, J. B. (2014). How marketing scholars might help address issues in resource-based theory. Journal of the Academy of Marketing Science, 42(1), 24–26. https://doi.org/10.1007/s11747-013-0351-8.

Barrales-Molina, V., Martínez-López, F. J., & Gázquez-Abad, J. C. (2014). Dynamic marketing capabilities: Toward an integrative framework. International Journal of Management Reviews, 16(4), 397–416. https://doi.org/10.1111/ijmr.12026.

Braganza, A., Brooks, L., Nepelski, D., Ali, M., & Moro, R. (2017). Resource management in big data initiatives: Processes and dynamic capabilities. Journal of Business Research, 70, 328–337. https://doi.org/10.1016/j.jbusres.2016.08.006.

Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235. https://doi.org/10.1177/053901883022002003.

Chandler, J. D., & Wieland, H. (2010). Embedded Relationships: Implications for Networks, Innovation, and Ecosystems. Journal of Business Market Management, 4(4), 199–215. https://doi.org/10.1007/s12087-010-0041-5.

Chang, W., Park, J. E., & Chaiy, S. (2010). How does CRM technology transform into organizational performance? A mediating role of marketing capability. Journal of Business Research, 63(8), 849–855. https://doi.org/10.1016/j.jbusres.2009.07.003.

Chen, L., & Nath, R. (2018). Business analytics maturity of firms: an examination of the relationships between managerial perception of IT, business analytics maturity and success. Information Systems Management, 35(1), 62–77. https://doi.org/10.1080/10580530.2017.1416948.

Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data To Big Impact. MIS Quarterly, 36(4), 1165–1188.

Chou, C., Chang, C. J., & Peng, J. (2016).Integrating XBRL data with textual information in Chinese : A semantic web approach. International Journal of Accounting Information Systems, 21, 32–46. https://doi.org/10.1016/j.accinf.2016.04.002.

Chuang, S.-H., & Lin, H.-N. (2013). The roles of infrastructure capability and customer orientation in enhancing customer-information quality in CRM systems: Empirical evidence from Taiwan. International Journal of Information Management, 33(2), 271–281. https://doi.org/10.1016/j.ijinfomgt.2012.12.003.

Chuang, S. H., & Lin, H. N. (2017). Performance implications of information-value offering in e-service systems: Examining the resource-based perspective and innovation strategy. Journal of Strategic Information Systems, 26(1), 22–38. https://doi.org/10.1016/j.jsis.2016.09.001.

Cohen, W. M., & Levinthal, D. A. (1990). Absorptive Capacity : A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35(1), 128–152. https://doi.org/10.2307/2393553.

Conti, C. R., Parente, R., & de Vasconcelos, F. C. (2015).When distance does not matter: Implications for Latin American multinationals. Journal of Business Research, 69(6), 1980–1992. https://doi.org/10.1016/j.jbusres.2015.10.144.

Cooke, A. D. J., & Zubcsek, P. P. (2017). The Connected Consumer: Connected Devices and the Evolution of Customer Intelligence. Journal of the Association for Consumer Research, 2(2).

Côrte-Real, N., Oliveira, T., & Ruivo, P. (2017).Assessing business value of Big Data Analytics in European firms. Journal of Business Research, 70, 379–390. https://doi.org/10.1016/j.jbusres.2016.08.011.

Day, G. S. (2011).Closing the Marketing Capabilities Gap. Journal of Marketing, 75(4), 183–195. https://doi.org/10.1509/jmkg.75.4.183, G. S. (2014).An outside-in approach to resource-based theories. Journal of the Academy of Marketing Science, 42(1), 27–28. https://doi.org/10.1007/s11747-013-0348-3.

Freeman, L. C. (1978). Centrality in Social Networks Conceptual Clarification. Social Networks, 1, 215–239.

Germann, F., Lilien, G. L., Fiedler, L., & Kraus, M. (2014). Do Retailers Benefit from Deploying Customer Analytics? Journal of Retailing, 90(4), 587–593. https://doi.org/10.1016/j.jretai.2014.08.002.

Grover, P. (2017). Big Data Analytics : A Review on Theoretical Contributions and Tools Used in Literature. Global Journal of Flexible Systems Management, 18(3), 203–229. https://doi.org/10.1007/s40171-017-0159-3.

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572. https://doi.org/10.1073/pnas.0507655102.

Hong, W., Chan, F. K. Y., Thong, J. Y. L., Chasalow, L. C., & Dhillon, G. (2013). A Framework and Guidelines for Context-Specific Theorizing in Information Systems Research. Information Systems Research, 7047(2004), 1–26.

Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2004).A Critical Review of Construct Indicators and Measurement Model Misspecification in Marketing and Consumer Research. Journal of Consumer Research, 30(September 2003), 199–218. https://doi.org/10.1086/376806.

Jayachandran, S., Sharma, S., Kaufman, P., & Raman, P. (2005).The role of relational information processes and technology use in customer relationship management. Journal of Marketing, 69(4), 177–192. https://doi.org/10.1509/jmkg.2005.69.4.177.

Johnson, J. S., Friend, S. B., & Lee, H. S. (2017). Big Data Facilitation, Utilization, and Monetization: Exploring the 3Vs in a New Product Development Process. Journal of Product Innovation Management, 34(5), 640–658. https://doi.org/10.1111/jpim.12397.

Kessler, M. M. (1963). Bibliographic Coupling Between Scientific Papers. American Documentation, 14(1), 10–25.

Khanagha, S., Volberda, H., & Oshri, I. (2017). Customer Co-Creation and Exploration of Emerging Technologies: The Mediating Role of Managerial Attention and Initiatives. Long Range Planning, 50, 221–242. https://doi.org/10.1016/j.lrp.2015.12.019.

Kim, H. J., Jo, N. O., & Shin, K. S. (2016).Optimization of cluster-based evolutionary undersampling for the artificial neural networks in corporate bankruptcy prediction. Expert Systems with Applications, 59, 226–234. https://doi.org/10.1016/j.eswa.2016.04.027.

Kumar, A., Bezawada, R., Rishika, R., Janakiraman, R., & Kannan, P. K. (2016). From social to sale: The effects of firm-generated content in social media on customer behavior. Journal of Marketing, 80(1), 7–25. https://doi.org/10.1509/jm.14.0249.

MacKenzie, Podsakoff, & Podsakoff. (2011). Construct Measurement and Validation Procedures in MIS and Behavioral Research: Integrating New and Existing Techniques. MIS Quarterly, 35(2), 293. https://doi.org/10.2307/23044045.

MacRoberts, M. H., & MacRoberts, B. R. (2010). Problems of citation analysis: A study of uncited and seldom-cited influences. Journal of the American Society for Information Science and Technology, 61(1), 1–12. https://doi.org/10.1002/asi.21228.

Morgan, N. A., Zou, S., Vorhies, D. W., & Katsikeas, C. S. (2003). Experiential and Informational Knowledge, Architectural Marketing Capabilities, and the Adaptive Performance of Export Ventures: A Cross-National Study. Decision Sciences, 34(2), 287–321. https://doi.org/10.1111/1540-5915.02375.

Ozdemir, S., Kandemir, D., & Eng, T. (2017).The role of horizontal and vertical new product alliances in responsive and proactive market orientations and performance of industrial manufacturing firms. Industrial Marketing Management, 64(July), 25–35. https://doi.org/10.1016/j.indmarman.2017.03.006.

Pavlou, P. A., & Sawy, O. A. E. (2010). The “third hand”: IT-enabled competitive advantage in turbulence through improvisational capabilities. Information Systems Research, 21(3), 443–471. https://doi.org/10.1287/isre.1100.0280.

Popovič, A., Hackney, R., Coelho, P. S., & Jaklič, J. (2014). How information-sharing values influence the use of information systems: An investigation in the business intelligence systems context. The Journal of Strategic Information Systems, 23, 270–283. https://doi.org/10.1016/j.jsis.2014.08.003.

Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2016). The impact of big data analytics on firms ’ high value business performance. Information Systems Frontiers, 20(2), 209–222. https://doi.org/10.1007/s10796-016-9720-4.

Quevedo-Silva, F., Santos, E. B. A., Brandão, M. M., & Vils, L. (2016). ESTUDO BIBLIOMÉTRICO: ORIENTAÇÕES SOBRE SUA APLICAÇÃO. Revista Brasileira de Marketing, 15(2), 246–262. https://doi.org/10.5585/remark.v15i2.3274.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.URL https://www.R-project.org/.

Rapp, A., Trainor, K. J., & Agnihotri, R. (2010). Performance implications of customer-linking capabilities: Examining the complementary role of customer orientation and CRM technology. Journal of Business Research, 63(11), 1229–1236. https://doi.org/10.1016/j.jbusres.2009.11.002.

Rosati, P., Cummins, M., Deeney, P., Gogolin, F., van der Werff, L., & Lynn, T. (2017). The effect of data breach announcements beyond the stock price: Empirical evidence on market activity. International Review of Financial Analysis, 49, 146–154. https://doi.org/10.1016/j.irfa.2017.01.001.

Sheng, J., Amankwah-amoah, J., & Wang, X. (2017).A multidisciplinary perspective of big data in management research. International Journal of Production Economics, 191(November 2016), 97–112. https://doi.org/10.1016/j.ijpe.2017.06.006.

Tan, K. H., & Zhan, Y. (2017). Improving new product development using big data: a case study of an electronics company. R and D Management, 47(4), 570–582. https://doi.org/10.1111/radm.12242.

Tan, K. H., Zhan, Y. Z., Ji, G., Ye, F., & Chang, C. (2015). Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. International Journal of Production Economics, 165(July 2015), 223–233. https://doi.org/10.1016/j.ijpe.2014.12.034.

Teo, T. S. H., Nishant, R., & Koh, P. B. L. (2016). Do shareholders favor business analytics announcements? Journal of Strategic Information Systems, 25(4), 259–276. https://doi.org/10.1016/j.jsis.2016.05.001.

Trainor, K. J., Andzulis, J., Rapp, A., & Agnihotri, R. (2014). Social media technology usage and customer relationship performance: A capabilities-based examination of social CRM. Journal of Business Research, 67(6), 1201–1208. https://doi.org/10.1016/j.jbusres.2013.05.002.

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3.

Vogel, R., & Güttel, W. H. (2013). The dynamic capability view in strategic management: A bibliometric review. International Journal of Management Reviews, 15(4), 426–446. https://doi.org/10.1111/ijmr.12000.

Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. https://doi.org/10.1016/j.jbusres.2016.08.009.

Wang, Y., & Byrd, T. A. (2017).Business analytics-enabled decision-making effectiveness through knowledge absorptive capacity in health care. Journal of Knowledge Management, 21(3), 517–539. https://doi.org/10.1108/JKM-08-2015-0301.

Wang, Y., & Hajli, N. (2017).Exploring the path to big data analytics success in healthcare. Journal of Business Research, 70, 287–299. https://doi.org/10.1016/j.jbusres.2016.08.002.

Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97–121. https://doi.org/10.1509/jm.15.0413.

Xu, Z., Frankwick, G. L., & Ramirez, E. (2016). Effects of big data analytics and traditional marketing analytics on new product success: A knowledge fusion perspective. Journal of Business Research, 69(5), 1562–1566. https://doi.org/10.1016/j.jbusres.2015.10.017.

Descargas

Publicado

2021-03-09

Cómo citar

Louro, A. C., Brandão, M. M., & Sarcinelli, A. F. (2021). Foundations and trends in analytics and marketing relationship. ReMark - Revista Brasileira De Marketing, 20(1), 1–26. https://doi.org/10.5585/remark.v20i1.17554

Número

Sección

Artigos