Os bancos virtuais e avaliação do risco percebido e das expectativas de desempenho e de esforço na intenção comportamental
DOI:
https://doi.org/10.5585/remark.v19i4.16283Palavras-chave:
Fintech, Avaliação de Risco, Intenção ComportamentalResumo
Objetivo: O objetivo do artigo consiste em entender como é o processo de adoção de bancos virtuais por parte dos consumidores e analisar o impacto do risco percebido na intenção comportamental de adoção.
Método: O método de pesquisa adotado é dividido em duas fases, sendo primeira de natureza qualitativa e caráter exploratório, e a segunda com direcionamento quantitativo e caráter descritivo, substanciada no desenvolvimento de hipóteses e na análise estatística realizada com modelagem de equações estruturais (MEE).
Originalidade/Relevância: O comportamento do consumidor de serviços bancários influencia as instituições financeiras e implica em adoção de inovações nos serviços prestados. O artigo apresenta os aspectos que influenciam na intenção de adoção de inovação representada pela Fintech.
Resultados: A fase exploratória revelou que a falta de interesse em migrar para conta virtual é relacionada com insegurança por falta de uma comunicação adequada. Na fase descritiva foi possível afirmar que a Expectativa de Desempenho e a Expectativa de Esforço têm influência positiva na Intenção Comportamental, mas o maior receio dos consumidores é o risco de perda financeira ou roubo de dados.
Contribuições teórico/metodológicas: o uso de variação do modelo UTUAT, propiciou o entendimento do processo de adoção de tecnologia em um novo tipo de serviço bancário bem como a utilização de MEE para avaliar a relação entre as variáveis independente e dependente do modelo UTUAT.
Contribuições sociais/gerenciais: a pesquisa mostra a importância da comunicação mercadológica para as Start-ups, pois somente uma comunicação focada no público alvo irá gerar expectativa, de desempenho e de esforço, bem como reduzir o risco percebido.
Downloads
Referências
Abrahão, R. de S. (2015). Intenção de Adoção do Mobile Payment: uma análise à luz das teorias de aceitação e uso de tecnologia. Universidade Federal de Uberlândia.
Adapa, S., Fazal-e-Hasan, S. M., Makam, S. B., Azeem, M. M., & Mortimer, G. (2020). Examining the antecedents and consequences of perceived shopping value through smart retail technology. Journal of Retailing and Consumer Services, 52(March 2019), 101901.
Agarwal, S., & Chua, Y. H. (2020). FinTech and household finance: a review of the empirical literature. China Finance Review International.
Ajzen, I. (1991). The theory of planned behavior. Orgnizational Behavior and Human Decision Processes, 50, 179–211.
Akhgari, M., Bruning, E. R., Finlay, J., & Bruning, N. S. (2018). Image, performance, attitudes, trust, and loyalty in financial services. International Journal of Bank Marketing, 36(4), 744–763.
Ali, F., Rasoolimanesh, S. M., Sarstedt, M., Ringle, C. M., & Ryu, K. (2018). An assessment of the use of partial least squares structural equation modeling ( PLS-SEM ) in hospitality research. International Journal of Contemporary Hospitality Management, 30(1), 514–538.
Bellato, L. L. N., & Lima, M. C. (2010). Desafios e oportunidades para as marcas no contexto da Era Digital: Estudo de caso. Revista Brasileira de Pesquisa de Marketing, Opinião e Midia, 3(1), 8–16.
Bhukya, R., & Singh, S. (2015). The effect of perceived risk dimensions on purchase intention. American Journal of Business, 30(4), 218–230.
Brei, V. A., & Rossi, C. A. V. (2005). Confiança, valor percebido e lealdade em trocas relacionais de serviço: um estudo com usuários de Internet Banking no Brasil. Revista de Administração Contemporânea, 9(2), 145–168.
Breidbach, C. F., Keating, B. W., & Lim, C. (2019). Fintech: research directions to explore the digital transformation of financial service systems. Journal of Service Theory and Practice, 30(1), 79–102.
Brown, S. A., Dennis, A. R., & Venkatesh, V. (2010). Predicting Collaboration Technology Use: Integrating Technology Adoption and Collaboration Research. Journal of Management Information Systems, 27(2), 9–54.
Chaouali, W., Ben Yahia, I., & Souiden, N. (2016). The interplay of counter-conformity motivation, social influence, and trust in customers’ intention to adopt Internet banking services: The case of an emerging country. Journal of Retailing and Consumer Services, 28, 209–218.
Chong, A. Y. L. (2013). Predicting m-commerce adoption determinants: A neural network approach. Expert Systems with Applications, 40(2), 523–530.
Chua, P. Y., Rezaei, S., Gu, M. L., Oh, Y. M., & Jambulingam, M. (2018). Elucidating social networking apps decisions: Performance expectancy, effort expectancy and social influence. Nankai Business Review International, 9(2), 118–142.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Earlbaum Associates.
Cooper, D R.; Schindler, P. S. (2016). Métodos de Pesquisa em Administração (12 th). AMGH Editora Ltda.
Darmansyah, Fianto, B. A., Hendratmi, A., & Aziz, P. F. (2020). Factors determining behavioral intentions to use Islamic financial technology: Three competing models. Journal of Islamic Marketing, August 2019.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319–339.
Edmonds, W. A; Kennedy, T. D. (2017). An Applied Guide to Research Designs: Quantitative, Qualitative, and Mixed Methods (2nd ed.). Sage Publications, Inc.
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human Computer Studies, 59(4), 451–474.
Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra Structural Equation Models With. Journal of Marketing Research, 18(3), 382–388.
Fraering, M., & S. Minor, M. (2013). Beyond loyalty: customer satisfaction, loyalty, and fortitude. Journal of Services Marketing, 27(4), 334–344.
Gai, K., Qiu, M., & Sun, X. (2018). A survey on FinTech. Journal of Network and Computer Applications, 103(March 2017), 262–273.
Garga, E., & Bambale, A. J. (2016). The Impact of Service Quality on Customer Patronage: Mediating Effects of Switching Cost and Customer Satisfaction. International Journal of Global Business, 9(1), 39–58.
Gupta, K., & Arora, N. (2019). Investigating consumer intention to accept mobile payment systems through unified theory of acceptance model: An Indian perspective. South Asian Journal of Business Studies, 9(1), 88–114.
Hair, J F.; Babin, B ; Money, A H.; Samouel, P. (2005). Fundamentos de Métodos de Pesquisa em Administração. Bookman.
Hair, J F.; Black, W C; Babin, B J.; Anderson, R E.; Tatham, R. L. (2009). Análise Multivariada de Dados (6th ed.). Bookman.
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (2nd ed.). Sage Publications, Inc.
Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced Issues in Partial Least Squares Structural Equation Modeling. Sage Publications, Inc.
Han, H., & Ryu, K. (2012). The theory of repurchase decision-making (TRD): Identifying the critical factors in the post-purchase decision-making process. International Journal of Hospitality Management, 31(3), 786–797.
Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common Beliefs and Reality About PLS: Comments on Rönkkö and Evermann (2013). Organizational Research Methods, 17(2), 182–209.
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management and Data Systems, 116(1), 2–20.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), New Challenges to International Marketing (Vol. 20, pp. 277–319). Emerald Group Publishing Limited.
Jünger, M., & Mietzner, M. (2020). Banking goes digital: The adoption of FinTech services by German households. Finance Research Letters, 34(July 2019), 101260.
Kaur, G., & Gupta, S. (2012). Consumers’ Behavioral Intentions Toward Self-Service Technology in the Emerging Markets. Journal of Global Marketing, 25(5), 241–261.
Lopes, E. L., & Silva, D. (2012). Modelos Integrativos Do Comportamento Do Consumidor: Uma Revisão Teórica. Revista Brasileira de Marketing, 10(3), 3–23.
Martins, C., Oliveira, T., & Popovič, A. (2014). Understanding the internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1–13.
Matos, C. A. De, Henrique, J. L., & Rosa, F. (2009). The different roles of switching costs on the satisfaction-loyalty relationship. International Journal of Bank Marketing, 27(7), 506–523.
Mazambani, L., & Mutambara, E. (2019). Predicting FinTech innovation adoption in South Africa: the case of cryptocurrency. African Journal of Economic and Management Studies, 11(1), 30–50.
Milian, E. Z., Spinola, M. de M., & Carvalho, M. M. d. (2019). Fintechs: A literature review and research agenda. Electronic Commerce Research and Applications, 34(September 2018).
Mitchell, V. W. (1998). A role for consumer risk perceptions in grocery retailing. British Food Journal, 100(4), 171–183.
Nakashima, T. (2018). Creating credit by making use of mobility with FinTech and IoT. IATSS Research, 42(2), 61–66.
Namahoot, K. S., & Laohavichien, T. (2015). An analysis of behavioral intention to use Thai internet banking with quality management and trust. Journal of Internet Banking and Commerce, 20(3).
Namahoot, Kanokkarn Snae, & Laohavichien, T. (2018). Assessing the intentions to use internet banking: The role of perceived risk and trust as mediating factors. International Journal of Bank Marketing, 36(2), 256–276.
Okada, S. I., & Souza, E. M. S. de. (2011). Estratégias De Marketing Digital Na Era Da Busca. Revista Brasileira de Marketing, 10(1), 46–72.
Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34(5), 689–703.
Park, E., & Ohm, J. (2014). Factors influencing users’ employment of mobile map services. Telematics and Informatics, 31(2), 253–265.
Pinochet, L. H. C., Diogo, G. T., Lopes, E. L., Herrero, E., & Bueno, R. L. P. (2019). Propensity of contracting loans services from FinTech’s in Brazil. International Journal of Bank Marketing.
Prahalad, C. K., & Ramaswamy, V. (2004). Co-creation experiences: The next practice in value creation. Journal of Interactive Marketing, 18(3), 5–14.
Rahi, S., & Ghani, M. A. (2019). Investigating the role of UTAUT and e-service quality in internet banking adoption setting. The TQM Journal, 31(3), 491–506.
Riffai, M. M. M. A., Grant, K., & Edgar, D. (2012). Big TAM in Oman: Exploring the promise of on-line banking, its adoption by customers and the challenges of banking in Oman. International Journal of Information Management, 32(3), 239–250.
Ringle, C. M., Silva, D., & Bido, D. S. (2014). Structural Equation Modeling with the Smartpls. Revista Brasileira de Marketing, 13(02), 56–73.
Ryu, H. S. (2018). What makes users willing or hesitant to use Fintech?: the moderating effect of user type. Industrial Management and Data Systems, 118(3), 541–569.
Şahİn, A., Turhan, G., & Zehİr, C. (2013). Building behavioral intentions in automotive industry : Brand experience , satisfaction , trust , direct mail communication and attitudes toward advertising. Business Management Dynamics, 3(4), 45–61.
Shiau, W. L., Yuan, Y., Pu, X., Ray, S., & Chen, C. C. (2020). Understanding fintech continuance: perspectives from self-efficacy and ECT-IS theories. Industrial Management and Data Systems.
Stewart, H., & Jürjens, J. (2018). Data security and consumer trust in FinTech innovation in Germany. Information and Computer Security, 26(1), 109–128.
Suki, N. M., & Suki, N. (2017). Modeling the determinants of consumers’ attitudes toward online group buying: Do risks and trusts matters? Journal of Retailing and Consumer Services, 36(February), 180–188.
Sweeney, J. C., Soutar, G. N., & Johnson, L. W. (1999). The role of perceived risk in the quality-value relationship: A study in a retail environment. Journal of Retailing, 75(1), 77–105.
United Nations Conference on Trade and Development (UNCTAD). (2016). World Investment Report 2016 - Investor nationality: Policy challenges. In United Nations Publication.
Vargo, S. L., & Morgan, F. W. (2005). Services in Society and Academic Thought: An Historical Analysis. Journal of Macromarketing, 25(1), 42–53.
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478.
Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178.
Wong, C. H., Tan, G. W. H., Loke, S. P., & Ooi, K. B. (2015). Adoption of mobile social networking sites for learning? Online Information Review, 39(6), 762–778.
Wonglimpiyarat, J. (2017). FinTech banking industry: a systemic approach. Foresight, 19(6), 590–603.
Zeithaml, V. A., Berry, L., & Parasuraman, A. (1996). Behavioral Consequences of Service Quality. Journal of Marketing, 60(2), 31–46.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Revista Brasileira de Marketing
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.