In the right place at the right time: a review of mobile location-based marketing and a research agenda
DOI:
https://doi.org/10.5585/remark.v20i2.18713Keywords:
Geolocation, Location-Based Marketing, Mobile Marketing, Retail, Traffic acquisitionAbstract
Objective: Based on the increasingly pervasive presence of mobile in the retail context, the purpose of the present research is to examine the potential effects of the mobile message content and the geolocation data as drivers of store visits, connecting online efforts to offline behavior.
Method: This article provides a literature review of what is known about mobile marketing, location-based communication, and push-notification effect on customers’ attitudes and behavior.
Results: We synthesize arguments for location-based push notifications related to visits to the offline site, and coupons offer, personalized and high-engagement content. Based on numerous findings from marketing and customer research, we identify a set of general propositions.
Theoretical/methodological contributions: This study intends to contribute to theories of mobile marketing, omnichannel customer behavior as well as the understanding of geolocation promotions. By identifying strategies that marketers may employ for more effective geolocation promotions, the research identifies gaps in our current knowledge and thereby outlines opportunities for future research.
Managerial implications: The main assumption behind our review is that the content and the timing of the message (considering the customer’s geolocation) increase the visits to offline sites. Context and convenience as the primary drivers of the effect (visits to the offline POS generated by mobile notifications), considering that context and convenience are represented by geolocation and message content. That provides the base for a mobile model for companies to attract customers to physical locations This research contributes by enlightening the path to mobile activation in retail multichannel channel strategy.
Downloads
References
Aguirre, E., Roggeveen, A. L., Grewal, D., & Wetzels, M. (2016). The personalization-privacy paradox: implications for new media. Journal of Consumer Marketing, 33(2), 98–110. https://doi.org/10.1108/JCM-06-2015-1458
Andrade, E. B., Kaltcheva, V., & Weitz, B. (2002). Self-Disclosure on the Web: The Impact of Privacy Policy, Reward, and Company Reputation. Advances in Consumer Research, 29(1), 350–354.
Andrews, M., Goehring, J., Hui, S., Pancras, J., & Thornswood, L. (2016). Mobile Promotions: A Framework and Research Priorities. Journal of Interactive Marketing, 34, 15–24. https://doi.org/10.1016/j.intmar.2016.03.004
Bakopoulos, V., Baronello, J., & Briggs, R. (2017). How Brands Can Make Smarter Decisions in Mobile Marketing. Journal of Advertising Research, 57(4), 447–461. https://doi.org/10.2501/JAR-2017-052
Barwise, P., & Strong, C. (2002). Permission-Based Mobile Background: the Growth of Mobile. Journal of Interactive Marketing, 16(1), 14–24.
Bauer, H. H., Reichardt, T., Barnes, S. J., & Marcus, M. N. (2005). Driving Consumer Acceptance of Location-Based Services in Mobile Applications: A Theoretical Framework and an Empirical Study. Journal of Electronic Commerce Research, 6(3), 181–192.
Beeck, I., & Toporowski, W. (2017). When location and content matter: effects of mobile messages on intention to redeem. International Journal of Retail & Distribution Management, 45(7/8), 826–843. https://doi.org/10.1108/IJRDM-09-2016-0171
Bellman, S., Potter, R. F., Treleaven-Hassard, S., Robinson, J. A., & Varan, D. (2011). The Effectiveness of Branded Mobile Phone Apps. Journal of Interactive Marketing, 25(4), 191–200. https://doi.org/10.1016/j.intmar.2011.06.001
Bonilla, C. A., Merigó, J. M., & Torres-Abad, C. (2015). Economics in Latin America: a bibliometric analysis. Scientometrics, 105(2), 1239–1252. https://doi.org/10.1007/s11192-015-1747-7
Chaparro-Peláez, J., Agudo-Peregrina, Á. F., & Pascual-Miguel, F. J. (2016). Conjoint analysis of drivers and inhibitors of e-commerce adoption. Journal of Business Research, 69(4), 1277–1282. https://doi.org/10.1016/j.jbusres.2015.10.092
Chiang, I.-P., Lin, C.-Y., & Huang, C.-H. (2018). Measuring The Effects of Online-to-Offline Marketing. Contemporary Management Research, 14(3), 167–190. https://doi.org/10.7903/cmr.18462
Cliquet, G. (2021). From Geomarketing to Spatial Marketing. In S. Colombo (Ed.), Spatial Economics Volume II: Vol. II (pp. 277–305). https://doi.org/10.1007/978-3-030-40094-1_10
Comscore. (2018). Global Digital Future in Focus - 2018 International Edition. Retrieved from https://www.comscore.com/Insights/Presentations-and-Whitepapers/2018/Global-Digital-Future-in-Focus-2018
Daft, R. L., Lengel, R. H., & Trevino, L. K. (1987). Message Equivocality, Media Selection, and Manager Performance: Implications for Information Systems. MIS Quarterly, 11(3), 355. https://doi.org/10.2307/248682
Danaher, P. J., Smith, M. S., Ranasinghe, K., & Danaher, T. S. (2015). Where, When, and how Long: Factors that Influence the Redemption of Mobile Phone Coupons. Journal of Marketing Research, 52(5), 710–725. https://doi.org/10.1509/jmr.13.0341
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
Dholakia, U. M., Kahn, B. E., Reeves, R., Rindfleisch, A., Stewart, D., & Taylor, E. (2010). Consumer Behavior in a Multichannel, Multimedia Retailing Environment. Journal of Interactive Marketing, 24(2), 86–95. https://doi.org/10.1016/j.intmar.2010.02.005
Dubé, J., Fang, Z., Fong, N., & Luo, X. (2017). Competitive Price Targeting with Smartphone Coupons. Marketing Science, 36(6), 944–975. https://doi.org/10.1287/mksc.2017.1042
Eastin, M. S., Brinson, N. H., Doorey, A., & Wilcox, G. (2016). Living in a big data world: Predicting mobile commerce activity through privacy concerns. Computers in Human Behavior, 58, 214–220. https://doi.org/10.1016/j.chb.2015.12.050
eMarketer. (2018). Mobile Trends 2019 10 Predictions for What Marketers Can Expect. Retrieved from https://www.emarketer.com/content/mobile-trends-2019
Faqih, K. M. S., & Jaradat, M. I. R. M. (2015). Assessing the moderating effect of gender differences and individualism-collectivism at individual-level on the adoption of mobile commerce technology: TAM3 perspective. Journal of Retailing and Consumer Services, 22, 37–52. https://doi.org/10.1016/j.jretconser.2014.09.006
Fong, N. M., Fang, Z., & Luo, X. (2015). Geo-Conquesting: Competitive Locational Targeting of Mobile Promotions. Journal of Marketing Research, 52(5), 726–735. https://doi.org/10.1509/jmr.14.0229
Fulgoni, G. M., & Lipsman, A. (2016). The future of retail is mobile: How mobile marketing dynamics are shaping the future of retail. Journal of Advertising Research, 56(4), 346–351. https://doi.org/10.2501/JAR-2016-041
Ghose, A., Li, B., & Liu, S. (2015). Digitizing Offline Shopping Behavior Towards Mobile Marketing. International Conference on Information Systems, 1–15.
Ghose, A., Li, B., & Liu, S. (2019). Mobile Targeting Using Customer Trajectory Patterns. Management Science, 65(11), 5027–5049. https://doi.org/10.1287/mnsc.2018.3188
Giovannini, C. J., Ferreira, J. B., Silva, J. F. da, & Ferreira, D. B. (2015). The effects of trust transference, mobile attributes and enjoyment on mobile trust. BAR - Brazilian Administration Review, 12(1), 88–108. https://doi.org/10.1590/1807-7692bar2015140052
Grewal, D., Ahlbom, C.-P., Beitelspacher, L., Noble, S. M., & Nordfält, J. (2018). In-Store Mobile Phone Use and Customer Shopping Behavior: Evidence from the Field. Journal of Marketing, 82(4), 102–126. https://doi.org/10.1509/jm.17.0277
Grewal, D., Bart, Y., Spann, M., & Zubcsek, P. P. (2016). Mobile Advertising: A Framework and Research Agenda. Journal of Interactive Marketing, 34, 3–14. https://doi.org/10.1016/j.intmar.2016.03.003
Groß, M. (2015). Mobile shopping: a classification framework and literature review. International Journal of Retail & Distribution Management, 43(3), 221–241. https://doi.org/10.1108/IJRDM-06-2013-0119
Gupta, A., & Arora, N. (2017). Understanding determinants and barriers of mobile shopping adoption using behavioral reasoning theory. Journal of Retailing and Consumer Services, 36(December 2016), 1–7. https://doi.org/10.1016/j.jretconser.2016.12.012
Gutierrez, A., O’Leary, S., Rana, N. P., Dwivedi, Y. K., & Calle, T. (2019). Using privacy calculus theory to explore entrepreneurial directions in mobile location-based advertising: Identifying intrusiveness as the critical risk factor. Computers in Human Behavior, 95(September 2018), 295–306. https://doi.org/10.1016/j.chb.2018.09.015
Hofacker, C. F., de Ruyter, K., Lurie, N. H., Manchanda, P., & Donaldson, J. (2016). Gamification and Mobile Marketing Effectiveness. Journal of Interactive Marketing, 34(2016), 25–36. https://doi.org/10.1016/j.intmar.2016.03.001
Högberg, J., Wästlund, E., Aas, T. H., Hjemdahl, K., & Nordgård, D. (2020). Herding the
Hordes: Using Location-Based Services and Mobile Messaging to Affect Visitor Behavior. Journal of Hospitality & Tourism Research, 44(5), 870–878. https://doi.org/10.1177/1096348020912449
Hubert, M., Blut, M., Brock, C., Backhaus, C., & Eberhardt, T. (2017). Acceptance of Smartphone-Based Mobile Shopping: Mobile Benefits, Customer Characteristics, Perceived Risks, and the Impact of Application Context. Psychology & Marketing, 34(2), 175–194. https://doi.org/10.1002/mar.20982
Hui, S. K., Inman, J. J., Huang, Y., & Suher, J. (2013). The Effect of In-Store Travel Distance on Unplanned Spending: Applications to Mobile Promotion Strategies. Journal of Marketing, 77(2), 1–16. https://doi.org/10.1509/jm.11.0436
Ieva, M., Ziliani, C., Gázquez-Abad, J. C., & D’Attoma, I. (2018). Online versus Offline
Promotional Communication. Journal of Advertising Research, 58(3), 338–348. https://doi.org/10.2501/JAR-2017-040
Kim, T., Barasz, K., & John, L. K. (2019). Why Am I Seeing This Ad? The Effect of Ad Transparency on Ad Effectiveness. Journal of Consumer Research, 45(5), 906–932. https://doi.org/10.1093/jcr/ucy039
Klabjan, D., & Pei, J. (2011). In-store one-to-one marketing. Journal of Retailing and Consumer Services, 18(1), 64–73. https://doi.org/10.1016/j.jretconser.2010.09.012
Luo, X., Andrews, M., Fang, Z., & Phang, C. W. (2014). Mobile Targeting. Management Science, 60(7), 1738–1756. https://doi.org/10.1287/mnsc.2013.1836
Maity, M., & Dass, M. (2014). Consumer decision-making across modern and traditional channels: E-commerce, m-commerce, in-store. Decision Support Systems, 61(1), 34–46. https://doi.org/10.1016/j.dss.2014.01.008
Melumad, S., & Pham, M. T. (2020). The Smartphone as a Pacifying Technology. Journal of Consumer Research, 0. https://doi.org/10.1093/jcr/ucaa005
MMA. (2019). Location terminology guide: The language of location. Retrieved from http://www.mmaglobal.com/documents/location-terminology-guide%0A
Molitor, D., Reichhart, P., Spann, M., & Ghose, A. (2015). Measuring the Effectiveness of
Location-Based Pull Advertising: A Randomized Field Experiment. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2645281
Pantano, E., & Gandini, A. (2018). Shopping as a “networked experience”: an emerging framework in the retail industry. International Journal of Retail and Distribution Management, 46(7), 690–704. https://doi.org/10.1108/IJRDM-01-2018-0024
Pantano, E., & Priporas, C.-V. (2016). The effect of mobile retailing on consumers’ purchasing experiences: A dynamic perspective. Computers in Human Behavior, 61, 548–555. https://doi.org/10.1016/j.chb.2016.03.071
Parasuraman, A., & Colby, C. L. (2015). An Updated and Streamlined Technology Readiness Index. Journal of Service Research, 18(1), 59–74. https://doi.org/10.1177/1094670514539730
Patsiotis, A., Atik, M., & Perrea, T. (2020). The influence of m-marketing tools on consumer buying process: evidence from the dining sector. International Journal of Retail & Distribution Management, 48(10), 1037–1056. https://doi.org/10.1108/IJRDM-06-2018-0109
PushCrew. (2018). The State of Web Push Notifications. Retrieved from https://medium.com/the-pushcrew-journal/2018s-most-comprehensive-report-on-push-notification-usage-and-use-cases-dd12a47111b7
Rogers, E. M. (1983). Diffusion of Innovation. New York: The Free Press.
San-Martín, S., Prodanova, J., & López Catalán, B. (2016). What makes services customers say “buy it with a mobile phone”? Journal of Services Marketing, 30(6), 601–614. https://doi.org/10.1108/JSM-02-2015-0081
Scharl, A., Dickinger, A., & Murphy, J. (2005). Diffusion and success factors of mobile marketing. Electronic Commerce Research and Applications, 4(2), 159–173. https://doi.org/10.1016/j.elerap.2004.10.006
Shankar, V., Kleijnen, M., Ramanathan, S., Rizley, R., Holland, S., & Morrissey, S. (2016). Mobile Shopper Marketing: Key Issues, Current Insights, and Future Research Avenues. Journal of Interactive Marketing, 34, 37–48. https://doi.org/10.1016/j.intmar.2016.03.002
Shankar, V., Venkatesh, A., Hofacker, C., & Naik, P. (2010). Mobile marketing in the retailing environment: Current insights and future research avenues. Journal of Interactive Marketing, 24(2), 111–120. https://doi.org/10.1016/j.intmar.2010.02.006
Sohn, S., Seegebarth, B., & Moritz, M. (2017). The Impact of Perceived Visual Complexity of Mobile Online Shops on User’s Satisfaction. Psychology & Marketing, 34(2), 195–214. https://doi.org/10.1002/mar.20983
Statista. (2019). E-commerce share of total global retail sales from 2015 to 2023. Retrieved from https://www.statista.com/statistics/534123/e-commerce-share-of-retail-sales-worldwide
Sultan, F., & Rohm, A. (2005). The coming era of “brand in the hand” marketing. MIT Sloan Management Review, 47(1).
Tang, D., Yang, Y., Yan, Y., & Zhou, M. (2016). What determines online consumers to migrate from PCs to mobile devices? - An empirical approach on consumers’ internet cross-channel behaviours. International Journal of Services Technology and Management, 22(1/2), 46. https://doi.org/10.1504/IJSTM.2016.077656
Tong, S., Luo, X., & Xu, B. (2020). Personalized mobile marketing strategies. Journal of the Academy of Marketing Science, 48(1), 64–78. https://doi.org/10.1007/s11747-019-00693-3
Tsang, M. M., Ho, S.-C., & Liang, T.-P. (2004). Consumer Attitudes Toward Mobile Advertising: An Empirical Study. International Journal of Electronic Commerce, 8(3), 65–78. https://doi.org/10.1080/10864415.2004.11044301
Tseng, F.-C., Cheng, T. C. E., Li, K., & Teng, C.-I. (2017). How does media richness contribute to customer loyalty to mobile instant messaging? Internet Research, 27(3), 520–537. https://doi.org/10.1108/IntR-06-2016-0181
Tseng, F., Cheng, T. C. E., Yu, P.-L., Huang, T.-L., & Teng, C.-I. (2019). Media richness, social presence and loyalty to mobile instant messaging. Industrial Management & Data Systems, 119(6), 1357–1373. https://doi.org/10.1108/IMDS-09-2018-0415
Van der Heijden. (2004). User Acceptance of Hedonic Information Systems. MIS Quarterly, 28(4), 695. https://doi.org/10.2307/25148660
Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
Verhoef, P. C., Stephen, A. T., Kannan, P. K., Luo, X., Abhishek, V., Andrews, M., … Zhang, Y. (2017). Consumer Connectivity in a Complex, Technology-enabled, and Mobile-oriented World with Smart Products. Journal of Interactive Marketing, 40, 1–8. https://doi.org/10.1016/j.intmar.2017.06.001
Wang, R. J.-H., Malthouse, E. C., & Krishnamurthi, L. (2015). On the Go: How Mobile Shopping Affects Customer Purchase Behavior. Journal of Retailing, 91(2), 217–234. https://doi.org/10.1016/j.jretai.2015.01.002
Xu, H., Teo, H., Tan, B. C. Y., & Agarwal, R. (2009). The Role of Push-Pull Technology in Privacy Calculus: The Case of Location-Based Services. Journal of Management Information Systems, 26(3), 135–174. https://doi.org/10.2753/MIS0742-1222260305
Zhang, J., & Mao, E. (2008). Understanding the acceptance of mobile SMS advertising among young Chinese consumers. Psychology and Marketing, 25(8), 787–805. https://doi.org/10.1002/mar.20239
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Brasileira de Marketing – ReMark
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.