Thermal acceptability of individuals living in housing vulnerability:

case study in Passo Fundo/RS - Brazil

Authors

DOI:

https://doi.org/10.5585/2023.23546

Keywords:

Conforto térmico. Aceitabilidade térmica. Moradia provisória. Vulnerabilidade habitacional

Abstract

Objective: This research aims to investigate and discuss the thermal conditions of a temporary housing and the residents' perceptions regarding the thermal environment.

Methodology: It is characterized as an empirical research, of a qualitative nature, of the exploratory type on a case study defined by convenience. Thermal assessment determinants are based on ASHRAE 55 (2020).

Originality/Relevance: The normative of thermal comfort consider only regular and permanent buildings. This study evaluates the thermal conditions of a provisional housing in precarious construction conditions, located in a region with a subtropical climate, with low temperatures in winter.

Results: The thermal conditions of the internal environment are directly relate to external temperature variations and the thermal acceptability limits of residents tend to be higher than the parameters provided for in adaptative thermal comfort regulations.

Contributions: This is a pilot study on the thermal conditions of temporary housing in the south of the country, demonstrating that individuals who live in this type of housing tend to have greater thermal acceptability for the cold in relation to the normative parameters of thermal comfort, while the performance housing temperature follows the microclimatic changes of the external environment.

Downloads

Download data is not yet available.

Author Biographies

Thaíse Sebben, ATITUS EDUCAÇÃO - Passo Fundo, RS

Mestre em Arquitetura e Urbanismo

Eduardo Grala da Cunha, Universidade Federal de Pelotas / Pelotas, RS

Pós-Doutor em Arquitetura e Urbanismo. Professor Associado da Universidade Federal de Pelotas.

Thaísa Leal da Silva, ATITUS EDUCAÇÃO / Passo Fundo, RS

Doutora em Engenharia Eletrotécnica e de Computadores. Professora no Programa de Pós-Graduação Stricto Sensu em Arquitetura e Urbanismo (PPGARQ) da ATITUS EDUCAÇÃO.

References

ASHRAE 55 (2020). Thermal Environmental Conditions for Human Occupancy. Standard 55. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc.: Atlanta, GA, USA.

Fayazi, M. & Lizarralde, G. (2013). The role of low-cost housing in the path from vulnerability to resilience. Archnet-IJAR, [s. l.], v. 7, n. 3, p. 146-167. https://doi.org/10.26687/archnet-ijar.v7i3.56

Instituto Nacional de Meteorologia - INMET. (2022). Normais climatológicas. Disponível em https://clima.inmet.gov.br/GraficosClimatologicos/DF/83377.

Nicol, F.; Humphreys, M.; ROAF, S. (2012). Adaptive Thermal Comfort: principles and practice. Routledge. DOI: 10.1201/9780429294983-6.

Albadra, D., Coley, D., & Hart, J. (2018). RIBA president’s awards for research 2017 winner of the annual theme - Housing: Toward healthy housing for the displaced. Journal of Architecture, 23(1), 115–136. https://doi.org/10.1080/13602365.2018.1424227

de Dear, R., Xiong, J., Kim, J., & Cao, B. (2020). A review of adaptive thermal comfort research since 1998. Energy and Buildings, 214, 109893. https://doi.org/10.1016/j.enbuild.2020.109893

Domínguez-Amarillo, S., Rosa-García, Á., Fernández-Agüera, J., & Escobar-Castrillón, N. (2021). Architecture of the scape: Thermal assessment of refugee shelter design in the extremes climates of Jordan, Afghanistan and South Sudan. Journal of Building Engineering, 42(March). https://doi.org/10.1016/j.jobe.2021.102396

Hamdan, M., Abd-Alhamid, F., & Dabbour, L. (2021). Impact of passive techniques on thermal behavior of emergency shelters. Ecological Engineering and Environmental Technology, 22(3), 112–119. https://doi.org/10.12912/27197050/135523

Humphreys, M. A., Rijal, H. B., & Nicol, J. F. (2013). Updating the adaptive relation between climate and comfort indoors; new insights and an extended database. Building and Environment, 63, 40–55. https://doi.org/10.1016/j.buildenv.2013.01.024

Humphreys, M. A., & Nicol, J. F. (2018). Principles of Adaptive Thermal Comfort. Springer Nature Singapore. 2018. T. Sustainable Houses and Living in the Hot-Humid Climates of Asia, https://doi.org/10.1007/978-981-10-8465-2_10

Malik, J., & Bardhan, R. (2023). A localized adaptive comfort model for free-running low-income housing in Mumbai, India. Energy and Buildings, 281, 112756. https://doi.org/10.1016/j.enbuild.2022.112756

Moran, F., Fosas, D., Coley, D., Natarajan, S., Orr, J., & Ahmad, O. B. (2021). Improving thermal comfort in refugee shelters in desert environments. Energy for Sustainable Development, 61, 28–45. https://doi.org/10.1016/j.esd.2020.12.008

Nicol, F.; Humphreys, M. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, [s. l.], v. 34, n. 6, p. 563-572.: https://doi.org/10.1016/S0378-7788(02)00006-3.

Nicol, J. F., & Roaf, S. (2017). Rethinking thermal comfort. Building Research and Information, 45(7), 711–716. http://dx.doi.org/10.1080/09613218.2017.1301698

Nicol, F. J. The limits to accepted indoor temperatures. (2019). Proceedings of the 1st international conference on Comfort at the extremes: energy, economy and climate. www.comfortattheextremes.com

Nicol, F., Bahadur Rijal, H., Imagawa, H., & Thapa, R. (2020). The range and shape of thermal comfort and resilience. Energy and Buildings, 224, 110277. https://doi.org/10.1016/j.enbuild.2020.110277

Ning, H., Wang, Z., & Ji, Y. (2016). Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability? Applied Energy, 183, 22–30. https://doi.org/10.1016/j.apenergy.2016.08.157

Nunes, G., & Giglio, T. (2022). Effects of climate change in the thermal and energy performance of low-income housing in Brazil—assessing design variable sensitivity over the 21st century. Renewable and Sustainable Energy Reviews, 168(August), 112885. https://doi.org/10.1016/j.rser.2022.112885

Ramalhete, I. M. (2020). Modelo de Habitação Adaptativa a Custos Reduzidos: Proposta de um modelo de base para o projeto de arquitectura de habitação adaptativa para os países em desenvolvimento. 2020. Tese (Doutorado Arquitetura, Tecnologia e Gestão da Construção). Universidade de Lisboa, Lisboa, Portugal.

Sagiroglu, M., & Memari, A. M. (2018). Learning from the experiences of using different types of temporary housing systems. 42nd IAHS WORLD CONGRESS The housing for the dignity of mankind 10-13rd April 2018 Naples, Italy, September, 1–10.

Siu, C. Y., O’Brien, W., Touchie, M., Armstrong, M., Laouadi, A., Gaur, A., Jandaghian, Z., & Macdonald, I. (2023). Evaluating thermal resilience of building designs using building performance simulation – A review of existing practices. Building and Environment, 234(January). https://doi.org/10.1016/j.buildenv.2023.110124

Tavakoli, E., O’Donovan, A., Kolokotroni, M., & O’Sullivan, P. D. (2022). Evaluating the indoor thermal resilience of ventilative cooling in non-residential low energy buildings: A review. Building and Environment, 222(June). https://doi.org/10.1016/j.buildenv.2022.109376

Thapa, R., Rijal, H. B., & Shukuya, M. (2018). Field study on acceptable indoor temperature in temporary shelters built in Nepal after massive earthquake 2015. Building and Environment, 135(February), 330–343. https://doi.org/10.1016/j.buildenv.2018.03.001

Thapa, R., Rijal, H. B., Shukuya, M., & Imagawa, H. (2019). Study on the wintry thermal improvement of makeshift shelters built after Nepal earthquake 2015. Energy and Buildings, 199, 62–71. https://doi.org/10.1016/j.enbuild.2019.06.031

Xiang, Z., Qin, H., He, B. J., Han, G., & Chen, M. (2022). Heat vulnerability caused by physical and social conditions in a mountainous megacity of Chongqing, China. Sustainable Cities and Society, 80(September 2021). https://doi.org/10.1016/j.scs.2022.103792

Xiong, Y., Liu, J., & Kim, J. (2019). Understanding differences in thermal comfort between urban and rural residents in hot summer and cold winter climate. Building and Environment, 165(September), 106393. https://doi.org/10.1016/j.buildenv.2019.106393

Zheng, P., Wu, H., Liu, Y., Ding, Y., & Yang, L. (2022). Thermal comfort in temporary buildings: A review. Building and Environment, 221(May). https://doi.org/10.1016/j.buildenv.2022.109262

Published

2023-10-19

How to Cite

Sebben, T., Cunha, E. G. da, & Silva, T. L. da. (2023). Thermal acceptability of individuals living in housing vulnerability: : case study in Passo Fundo/RS - Brazil. Revista De Gestão Ambiental E Sustentabilidade, 12(1), e23546. https://doi.org/10.5585/2023.23546