Thermal acceptability of individuals living in housing vulnerability:
case study in Passo Fundo/RS - Brazil
DOI:
https://doi.org/10.5585/2023.23546Keywords:
Conforto térmico. Aceitabilidade térmica. Moradia provisória. Vulnerabilidade habitacionalAbstract
Objective: This research aims to investigate and discuss the thermal conditions of a temporary housing and the residents' perceptions regarding the thermal environment.
Methodology: It is characterized as an empirical research, of a qualitative nature, of the exploratory type on a case study defined by convenience. Thermal assessment determinants are based on ASHRAE 55 (2020).
Originality/Relevance: The normative of thermal comfort consider only regular and permanent buildings. This study evaluates the thermal conditions of a provisional housing in precarious construction conditions, located in a region with a subtropical climate, with low temperatures in winter.
Results: The thermal conditions of the internal environment are directly relate to external temperature variations and the thermal acceptability limits of residents tend to be higher than the parameters provided for in adaptative thermal comfort regulations.
Contributions: This is a pilot study on the thermal conditions of temporary housing in the south of the country, demonstrating that individuals who live in this type of housing tend to have greater thermal acceptability for the cold in relation to the normative parameters of thermal comfort, while the performance housing temperature follows the microclimatic changes of the external environment.
Downloads
References
ASHRAE 55 (2020). Thermal Environmental Conditions for Human Occupancy. Standard 55. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc.: Atlanta, GA, USA.
Fayazi, M. & Lizarralde, G. (2013). The role of low-cost housing in the path from vulnerability to resilience. Archnet-IJAR, [s. l.], v. 7, n. 3, p. 146-167. https://doi.org/10.26687/archnet-ijar.v7i3.56
Instituto Nacional de Meteorologia - INMET. (2022). Normais climatológicas. Disponível em https://clima.inmet.gov.br/GraficosClimatologicos/DF/83377.
Nicol, F.; Humphreys, M.; ROAF, S. (2012). Adaptive Thermal Comfort: principles and practice. Routledge. DOI: 10.1201/9780429294983-6.
Albadra, D., Coley, D., & Hart, J. (2018). RIBA president’s awards for research 2017 winner of the annual theme - Housing: Toward healthy housing for the displaced. Journal of Architecture, 23(1), 115–136. https://doi.org/10.1080/13602365.2018.1424227
de Dear, R., Xiong, J., Kim, J., & Cao, B. (2020). A review of adaptive thermal comfort research since 1998. Energy and Buildings, 214, 109893. https://doi.org/10.1016/j.enbuild.2020.109893
Domínguez-Amarillo, S., Rosa-García, Á., Fernández-Agüera, J., & Escobar-Castrillón, N. (2021). Architecture of the scape: Thermal assessment of refugee shelter design in the extremes climates of Jordan, Afghanistan and South Sudan. Journal of Building Engineering, 42(March). https://doi.org/10.1016/j.jobe.2021.102396
Hamdan, M., Abd-Alhamid, F., & Dabbour, L. (2021). Impact of passive techniques on thermal behavior of emergency shelters. Ecological Engineering and Environmental Technology, 22(3), 112–119. https://doi.org/10.12912/27197050/135523
Humphreys, M. A., Rijal, H. B., & Nicol, J. F. (2013). Updating the adaptive relation between climate and comfort indoors; new insights and an extended database. Building and Environment, 63, 40–55. https://doi.org/10.1016/j.buildenv.2013.01.024
Humphreys, M. A., & Nicol, J. F. (2018). Principles of Adaptive Thermal Comfort. Springer Nature Singapore. 2018. T. Sustainable Houses and Living in the Hot-Humid Climates of Asia, https://doi.org/10.1007/978-981-10-8465-2_10
Malik, J., & Bardhan, R. (2023). A localized adaptive comfort model for free-running low-income housing in Mumbai, India. Energy and Buildings, 281, 112756. https://doi.org/10.1016/j.enbuild.2022.112756
Moran, F., Fosas, D., Coley, D., Natarajan, S., Orr, J., & Ahmad, O. B. (2021). Improving thermal comfort in refugee shelters in desert environments. Energy for Sustainable Development, 61, 28–45. https://doi.org/10.1016/j.esd.2020.12.008
Nicol, F.; Humphreys, M. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, [s. l.], v. 34, n. 6, p. 563-572.: https://doi.org/10.1016/S0378-7788(02)00006-3.
Nicol, J. F., & Roaf, S. (2017). Rethinking thermal comfort. Building Research and Information, 45(7), 711–716. http://dx.doi.org/10.1080/09613218.2017.1301698
Nicol, F. J. The limits to accepted indoor temperatures. (2019). Proceedings of the 1st international conference on Comfort at the extremes: energy, economy and climate. www.comfortattheextremes.com
Nicol, F., Bahadur Rijal, H., Imagawa, H., & Thapa, R. (2020). The range and shape of thermal comfort and resilience. Energy and Buildings, 224, 110277. https://doi.org/10.1016/j.enbuild.2020.110277
Ning, H., Wang, Z., & Ji, Y. (2016). Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability? Applied Energy, 183, 22–30. https://doi.org/10.1016/j.apenergy.2016.08.157
Nunes, G., & Giglio, T. (2022). Effects of climate change in the thermal and energy performance of low-income housing in Brazil—assessing design variable sensitivity over the 21st century. Renewable and Sustainable Energy Reviews, 168(August), 112885. https://doi.org/10.1016/j.rser.2022.112885
Ramalhete, I. M. (2020). Modelo de Habitação Adaptativa a Custos Reduzidos: Proposta de um modelo de base para o projeto de arquitectura de habitação adaptativa para os países em desenvolvimento. 2020. Tese (Doutorado Arquitetura, Tecnologia e Gestão da Construção). Universidade de Lisboa, Lisboa, Portugal.
Sagiroglu, M., & Memari, A. M. (2018). Learning from the experiences of using different types of temporary housing systems. 42nd IAHS WORLD CONGRESS The housing for the dignity of mankind 10-13rd April 2018 Naples, Italy, September, 1–10.
Siu, C. Y., O’Brien, W., Touchie, M., Armstrong, M., Laouadi, A., Gaur, A., Jandaghian, Z., & Macdonald, I. (2023). Evaluating thermal resilience of building designs using building performance simulation – A review of existing practices. Building and Environment, 234(January). https://doi.org/10.1016/j.buildenv.2023.110124
Tavakoli, E., O’Donovan, A., Kolokotroni, M., & O’Sullivan, P. D. (2022). Evaluating the indoor thermal resilience of ventilative cooling in non-residential low energy buildings: A review. Building and Environment, 222(June). https://doi.org/10.1016/j.buildenv.2022.109376
Thapa, R., Rijal, H. B., & Shukuya, M. (2018). Field study on acceptable indoor temperature in temporary shelters built in Nepal after massive earthquake 2015. Building and Environment, 135(February), 330–343. https://doi.org/10.1016/j.buildenv.2018.03.001
Thapa, R., Rijal, H. B., Shukuya, M., & Imagawa, H. (2019). Study on the wintry thermal improvement of makeshift shelters built after Nepal earthquake 2015. Energy and Buildings, 199, 62–71. https://doi.org/10.1016/j.enbuild.2019.06.031
Xiang, Z., Qin, H., He, B. J., Han, G., & Chen, M. (2022). Heat vulnerability caused by physical and social conditions in a mountainous megacity of Chongqing, China. Sustainable Cities and Society, 80(September 2021). https://doi.org/10.1016/j.scs.2022.103792
Xiong, Y., Liu, J., & Kim, J. (2019). Understanding differences in thermal comfort between urban and rural residents in hot summer and cold winter climate. Building and Environment, 165(September), 106393. https://doi.org/10.1016/j.buildenv.2019.106393
Zheng, P., Wu, H., Liu, Y., Ding, Y., & Yang, L. (2022). Thermal comfort in temporary buildings: A review. Building and Environment, 221(May). https://doi.org/10.1016/j.buildenv.2022.109262
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Autores
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.