Urban vulnerability and the tools required for hydro-meteorological risk disaster management

Authors

DOI:

https://doi.org/10.5585/geas.v12i2.22616

Keywords:

Urban Vulnerability, Risk Management, Disasters, Climate Change

Abstract

Introduction: The advent of climate change has raised new challenges for cities and made it necessary to adopt strategic policies for mitigating its impact and allowing them to adapt more effectively to extreme events.

Objectives: To establish the concept of urban vulnerability and examine the measures adopted by towns and cities for the reduction of hydro-meteorological risks and their adaptation to climate change.

Methodology: A systematic review of the literature was carried out which can be found in the Science Direct e Scielo database for the period 2011-2021 and this makes it possible to trace the evolutionary path of the concept of “urban vulnerability”.

Uniqueness/Significance: Urban vulnerability has become a key factor in the current assessment of climate change and studies in this area must be strengthened. As well as this, there is a need to determine the links between attempts to adapt to climate change and the measures available to find solutions for disaster risk reduction (DRR).

Results: An evolutionary trend for the term “urban vulnerability” was noted, and this has been applied in several articles as a key variable in establishing an equation for disaster risk reduction. In 2020 there was evidence of progress that had been made in studies related to urban vulnerability regarding adaptations to climate change, new ideas about risk assessment and methods that could be employed at the local level (for towns and cities).

Social contributions on the part of the management: At present, when faced with climate change, the DRR has become an emergency service which is aimed at protecting human lives and material goods. This is because, while expanding, many of our towns and cities have incorporated areas that are vulnerable to extreme events; this has led to an understanding of how essential urban planning is to mitigate the possible risks of hydro-meteorological disasters.

Downloads

Download data is not yet available.

Author Biographies

Fernanda Santa Barbara Vissirini, State University of Rio de Janeiro, Faculty of Engineering

PhD student and Master in Environmental Engineering at the State University of Rio de Janeiro / Area in Natural Resources and Public Policies for Sustainability.

Paula Thaise Bermudez dos Reis, State University of Rio de Janeiro

PhD student in Environmental at the State University of Rio de Janeiro / Master Environmental Engineering at the State University of Rio de Janeiro - São João de Meriti / RJ

Fabrício Pimenta da Cunha, State University of Rio de Janeiro

PhD student and Master in Environmental Engineering at the State University of Rio de Janeiro / Area in Natural Resources and Public Policies for Sustainability / Petrópolis (RJ)

Fabio Ribeiro Gondim, Institute of Environment and Water Resources of Bahia – INEMA

Civil Servant of INEMA/BA / PhD student in Environmental Engineering – UERJ / Master in Environmental and Forestry Sciences - UFRRJ / Rio de Janeiro (RJ)

Alfredo Akira Ohnuma Jr., State University of Rio de Janeiro

Civil Engineer graduated from UFSCar - Federal University of São Carlos (2000), Master's (2005) and Doctorate in Environmental Engineering Sciences from USP / EESC - University of São Paulo (2008), School of Engineering of São Carlos, Department of Hydraulics and Sanitation. He is an Associate Professor at the State University of Rio de Janeiro (UERJ), in the Department of Sanitary and Environmental Engineering. He teaches courses in Civil Engineering and Environmental and Sanitary Engineering, in the Postgraduate Professional Master's Program in Environmental Engineering (PEAMB) and Doctorate in Environmental Engineering (DEAMB), at UERJ. Rio de Janeiro (RJ)

Rosa Maria Formiga Johnson, State University of Rio de Janeiro

PhD and Master in Environmental Sciences and Techniques from the Université de Paris-Est Créteil (France) and associate professor at the State University of Rio de Janeiro (UERJ) / Department of Sanitary and Environmental Engineering (DESMA) since 2006. She was Director of Water and Land Management at INEA-RJ (State Institute for the Environment), between 2009 and 2015. Rio de Janeiro (RJ)

References

Alves, H.P.F. (2021). Socio-environmental vulnerability in the São Paulo Macro-metropolis’ three main metropolitan regions: a socio-environmental indicators analysis. Ambiente & Sociedade, v.24. http://dx.doi.org/10.1590/1809-4422asoc20200030r2vu2021L1AO

Apreda, C., D’Ambrosio, V., Di Martino, F. (2019). A climate vulnerability and impact assessment model for complex urban systems. Environmental Science & Policy, 93, 11-26. https://doi.org/10.1016/j.envsci.2018.12.016

Arku, F. S., Angmor, E. N., & Adjei, G. T. (2017). Perception and responses of traders to climate change in downtown, Accra, Ghana". International Journal of Climate Change Strategies and Management, Vol. 9 No. 1, pp. 56-67. https://doi.org/10.1108/IJCCSM-03-2016-0027

Bao, J., Li, X., & Yu, C. (2015). The construction and validation of the heat vulnerability index, a review. International journal of environmental research and public health, 12(7), 7220-7234. https://doi.org/10.3390/ijerph120707220

Belle, Johannes A.; Jordaan, Andries; Collins, Nacelle. (2018). Managing wetlands for disaster risk reduction: A case study of the eastern Free State, South Africa. Jàmbá: Journal of Disaster Risk Studies, 10, 1-10. http://dx.doi.org/10.4102/jamba.v10i1.40

Biagini, B., Bierbaum, R., Stults, M., Dobardzic, S., & McNeeley, S. M. (2014). A typology of adaptation actions: A global look at climate adaptation actions financed through the Global Environment Facility. Global environmental change, 25, 97-108. https://doi.org/10.1016/j.gloenvcha.2014.01.003

Boland, B., Charchenko, E., Sahdev, S., Knupfer, S. (2021). Focused adaptation: A strategic approach to climate adaptation in cities. Disponível em: https://www.mckinsey.com/business-functions/sustainability/our-insights/how-cities-can-adapt-to-climate-change#signin/download/. Acesso em: Maio/2023.

Bouwens, C. J. L. (2017). Flooding observations in Rotterdam: mapping of flood-prone locations, flood vulnerability and risk analysis. Disponível em: https://www.nature.com/collections/jdjjbcbcgg/about-this-collection?gclid=Cj0KCQjwwvilBhCFARIsADvYi7I005IPedldqeOAQpF5ULK6FdwhEYB1YFClgTHmPTe99-U5Xe1M5P8aAs8AEALw_wcB. Acesso em: Maio/2023.

Broto, V. C., & Bulkeley, H. (2013). A survey of urban climate change experiments in 100 cities. Global environmental change, 23(1), 92-102. https://doi.org/10.1016/j.gloenvcha.2012.07.005

Cerreta, M., Mele, R., Poli, G. (2018). Urban Vulnerability Assessment: Towards a Cross-Scale Spatial Multi-criteria Approach. Computational Science and Its Applications. ICCSA 2018. Lecture Notes in Computer Science, vol 10962. Springer, Cham. https://doi.org/10.1007/978-3-319-95168-3_34

Cohen-Shacham E., Walters, G., Janzen, C., Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97. http://dx.doi.org/10.2305/IUCN.CH.2016.13.en

Cormier, N. S.; Pellegrino, P. R. M. (2008) Infraestrutura Verde: Uma estratégia paisagística para a água urbana. Paisagem Ambiente: ensaios (25) – São Paulo – p. 125 – 142. https://doi.org/10.11606/issn.2359-5361.v0i25p127-142

Corsi, A., Pagani, R. N., Cruz, T. B. R., Souza, F. F., & Kovaleski, J. L. (2022). Smart Sustainable Cities: Characterization and Impacts for Sustainable Development Goals. Rev. Gest. Ambient. e Sust. - GeAS, 10(1), 1-34, e20750. https://doi.org/10.5585/geas.v11i1.20750.

Centre for Research on the Epidemiology of Disasters (CRED) & United Nations Office for Disaster Risk Reduction (UNISDR). (2016). Poverty & death: disaster mortality, 1996–2015. Centre for Research on the Epidemiology of Disasters: Brussels, Belgium. Disponível em: https://reliefweb.int/report/world/poverty-death-disaster-and-mortality-1996-2015?gclid=Cj0KCQjwwvilBhCFARIsADvYi7ImBkf6rKeqjUuVn2vNOIDjTEmy6QPf1BervWui9AgGFD8Zy_I-_XUaAnWYEALw_wcB. Acesso em: Maio/2023.

Cutter, S. L., Burton, C. G., & Emrich, C. T. (2010). Disaster resilience indicators for benchmarking baseline conditions. Journal of homeland security and emergency management, 7(1). https://doi.org/10.2202/1547-7355.1732

Cardona, O. D. (2005). Indicators of Disaster Risk and Risk Management Title: Indicadores de riesgo de desastre y de gestión de riesgo (No. 80377). Inter-American Development Bank. Disponível em: https://www.unisdr.org/preventionweb/files/47966_notatecnicaindicadoresgrdbolivia.pdf. Acessado em: Maio/2023.

Denjean, B., Altamirano, M., Graveline, N., Giordano, R., Keur, P., Moncoulon, D. (2017). Natural Assurance Scheme: A level playing field framework for Green-Grey infrastructure development. Environmental research, 159, 24-38. https://doi.org/10.1016/j.envres.2017.07.006

Depietri, Y.; Mcphearson, T. (2017). Integrating the grey, green, and blue in cities: nature-based solutions for climate change adaptation and risk reduction. Nature-based solutions to climate change Adaptation in urban areas. Springer, Cham, 91-109. https://doi.org/10.1007/978-3-319-56091-5_6

Dhyani, S. Lahoti, S., Khare, S., Pujari, P., Verna, Parikshit. (2018). Ecosystem based Disaster Risk Reduction approaches (EbDRR) as a prerequisite for inclusive urban transformation of Nagpur City, India. International journal of disaster risk reduction, 32, 95-105. https://doi.org/10.1016/j.ijdrr.2018.01.018

Dobbs C., Eleuterio A.A., Amaya J.D., Montoya J., Kendal D. (2018). The benefits of urban and peri-urban forestry Unasylva, 69 (250), pp. 22-29. Disponível em: https://nespurban.edu.au/wp-content/uploads/2019/01/Dobbsetal2018_Unasylva_FORESTSANDSUSTAINABLECITIES.pdf. Acessado em: Maio/2023.

Empresa Brasil de Comunicação (EBC) (2015) Acordo do clima é oportunidade histórica, dizem ONGs. Disponível em: https://agenciabrasil.ebc.com.br/internacional/noticia/2015-12/acordo-do-clima-e-oportunidade-historica-dizem-ongs

Estrella, M., Saalismaa, N., & Renaud, F. G. (2013). Reduction (Eco-DRR): an overview. The role of ecosystems in disaster risk reduction, 26. https://doi.org/10.1016/j.ijdrr.2017.12.014

European Commission (2015). Towards an EU Research and Innovation policy agenda for nature-based solutions & re-naturing cities. Final Report of the Horizon2020 Expert Group on Nature-Based Solutions and Re-Naturing Cities. Brussels: European Commission. Disponível em: https://op.europa.eu/en/publication-detail/-/publication/fb117980-d5aa-46df-8edc-af367cddc202

European Environment Agency. (2012). Climate change, impacts and vulnerability in Europe 2012. Copenhagen, Denmark. ISBN: 978-92-9213-346-7. doi:10.2800/66071

European Environment Agency. (2016). Urban adaptation to climate change in Europe 2016. Transforming Cities in a Changing Climate. EEA Report N° 12/2016. Disponível em: https://www.preventionweb.net/publication/urban-adaptation-climate-change-europe-2016-transforming-cities-changing-climate

Fritzsche, K., Schneiderbauer, S., Bubeck, P., Kienberger, S., Buth, M., Zebisch, M., & Kahlenborn, W. (2014). The vulnerability sourcebook: concept and guidelines for standardised vulnerability assessments. Disponível em: https://www.adaptationcommunity.net/download/va/vulnerability-guides-manuals-reports/vuln_source_2017_EN.pdf

IUCN. (2016). Resolution 69 on Defining Nature-based Solutions (WCC-2016-Res-069). IUCN Resolutions, Recommendations and Other Decisions, World Conservation Congress Honolulu, Hawaii, United States. Disponível em: https://portals.iucn.org/library/sites/library/files/resrecfiles/WCC_2016_RES_069_EN.pdf

Iwama A. Y., Batistella M., Ferreira L. da C., Alves D. S., Ferreira L. da C. (2016). Risk, Vulnerability and Adaptation to Climate Change: An Interdisciplinary Approach, Ambiente & Sociedade, v. XIX, n. 2, p 95-118, São Paulo, Brasil. https://doi.org/10.1590/1809-4422ASOC137409V1922016

Hobbie, S. E.; Grimm, N. B. (2020). Nature-based approaches to managing climate change impacts in cities. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 375, n. 1794. https://doi.org/10.1098/rstb.2019.0124.

Hoornweg D. L., Sugar, C.L., Trejos, G. (2011). Cities and greenhouse gas emissions: moving forward. Environ. Urban., 23 (1), 207-227. https://doi.org/10.1177/0956247810392270

Intergovernmental Panel on Climate Change (IPCC) (2012). Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (Eds.). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press. Disponível em: https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/

Intergovernmental Panel on Climate Change (IPCC) (2014). Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar5/wg3/

Intergovernmental Panel on Climate Change (IPCC) (2022). Mudanças Climáticas 2022: Impactos, Adaptação e Vulnerabilidade. Contribuição do Grupo de Trabalho II para o Sexto Relatório de Avaliação do Painel Intergovernamental sobre Mudanças Climáticas Relatório Síntese. Cambridge University Press. Disponível em: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/

Johnson C., S. Blackburn. (2013). Advocacy for urban resilience: UNISDR's making cities resilient campaign. Environ. Urban., 26 (1), 29-52. https://doi.org/10.1177/095624781351868

Jones, H. P.; Hole, D. G.; Zavaleta, E. S. (2012). Harnessing nature to help people adapt to climate change. Nature Climate Change, 2, 7, 504-509. https://doi.org/10.1038/nclimate1463

Kazmierczak, A., & Cavan, G. (2011). Surface water flooding risk to urban communities: Analysis of vulnerability, hazard and exposure. Landscape and urban planning, 103(2), 185-197. https://doi.org/10.1016/j.landurbplan.2011.07.008

Kazmierczak, A., & Connelly, A. (2011). Buildings and Flooding: a risk-response case study. Manchester, UK: University of Manchester. Front. Environ. Sci. 10:931029. doi: 10.3389/fenvs.2022.931029

Kim K, Olshansky RB. (2015). The theory and practice of building back better. J Am Plan Assoc 80:289–292. https://doi.org/10.1080/01944363.2014.988597

Kita, S. M. (2017). Urban vulnerability, disaster risk reduction and resettlement in Mzuzu city, Malawi, International Journal of Disaster Risk Reduction, V. 22, p.158-166. ISSN 2212-4209, https://doi.org/10.1016/j.ijdrr.2017.03.010

Krellenberg K., Link F., Welz J., Harris J., Barth K., Irarrazaval F. (2014). Supporting local adaptation: The contribution of socio-environmental fragmentation to urban vulnerability, Applied Geography, Volume 55, p. 61-70, ISSN 0143-6228, https://doi.org/10.1016/j.apgeog.2014.08.013.

Kuhlicke, C., Kabisch, S., Krellenberg, K., & Steinführer, A. (2012). Urban vulnerability under conditions of global environmental change: conceptual reflections and empirical examples from growing and shrinking cities. Vulnerability, risks and complexity: impacts of global change on human habitats, 3, 27-38.

Kuhl, L.; Van Maanen, K.; Scyphers, S. (2020). An analysis of UNFCCC-financed coastal adaptation projects: Assessing patterns of project design and contributions to adaptive capacity. World Development, 127, 104748. https://doi.org/10.1016/j.worlddev.2019.104748

Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri, S. M. (2021). An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. Earth-Science Reviews, 103603. https://doi.org/10.1016/j.earscirev.2021.103603

Kumar, P., Debele, S. E., Sahani, J. Aragão L., Barisani, F., Basu, B. (2020) Towards an operationalisation of nature-based solutions for natural hazards. Science of the Total Environment, 731, 138855. https://doi.org/10.1016/j.scitotenv.2020.138855

Leal Filho W., Balogun, A.L., Olayide, O. E., Azeiteiro, U., Ayal, D. Y., Munoz, P. D. C. (2019). Assessing the impacts of climate change in cities and their adaptive capacity: Towards transformative approaches to climate change adaptation and poverty reduction in urban areas in a set of developing countries. Science of The Total Environment, 20, 1175-1190. https://doi.org/10.1016/j.scitotenv.2019.07.227

Li, X., Fong, P. S. W., Dai, S., & Li, Y. (2019) Towards sustainable Smart Cities: An empirical comparative assessment and development pattern optimization in China. Journal of Cleaner Production, 215, 730-743. https://doi.org/10.1016/j.jclepro.2019.01.046

Ludena, C.E., S.W. Yoon. (2015). Local Vulnerability Indicators and Adaptation to Climate Change: A Survey. Inter-American Development Bank, Technical Note No. 857 (IDB-TN857), Washington DC. Disponível em: https://publications.iadb.org/en/publication/12315/local-vulnerability-indicators-and-adaptation-climate-change-survey

Luederitz, C., Brink, E., Gralla, F., Hermelingmeier, V., Meyer, M., Niven, L., ... & von Wehrden, H. (2015). A review of urban ecosystem services: six key challenges for future research. Ecosystem services, 14, 98-112. https://doi.org/10.1016/j.ecoser.2015.05.001

Malta, F. S. & Marques, C., E. (2021). Socio-Environmental Vulnerability Index: An Application to Rio de Janeiro-Brazil. International Journal of Public Health. 66, 1-11. doi: 10.3389/ijph.2021.584308

Marchezini, V. (2020). Pesquisa transdisciplinar como suporte ao planejamento de ações de gestão de risco de desastres. Saúde Debate, Rio De Janeiro, V. 44, N. Especial 2, P. 33-47. DOI: 10.1590/0103-11042020E203

Marques, T. H. N. (2020). Eixos Multifuncionais: Infraestrutura Verde e Serviços Ecossistêmicos urbanos aplicados ao córrego Mandaqui, São Paulo, SP. 217 f. Disponível em: https://www.teses.usp.br/teses/disponiveis/16/16135/tde-15122020-114148/pt-br.php

McPhearson, T., Parnell, S., Simon, D., Gaffney, O., Elmqvist, T., Bai, X., ... & Revi, A. (2016). Scientists must have a say in the future of cities. Nature, 538(7624), 165-166. Disponível em: https://www.nature.com/news/polopoly_fs/1.20760!/menu/main/topColumns/topLeftColumn/pdf/538165a.pdf

Mileu, N., & Queirós, M. (2018) Integrating risk assessment into spatial planning: Risk The decision support system. ISPRS International Journal of Geo-Information, 7. https://doi.org/10.3390/ijgi7050184

Mitra, D., Bhandery, C., Mukhopadhyay, A., Chanda, A., Hazra, S. (2018). Landslide Risk Assessment in Darjeeling Hills Using Multi-criteria Decision Support System: A Bayesian Network Approach. Disaster Risk Reduction. Springer, Singapore. https://doi.org/10.1007/978-981-10-3310-0_18

Okanagan Basin Water Board - OBWB. (2021). Slow it. Spread it. Sink it! Second Edition. ed. Kelowna: Okanaguan Basin Water Board. Disponível em: https://www.obwb.ca/library/slow-it-spread-it-sink-it/

Oliveira D.B.B, Silva L.F. (2017). Multi-criteria analysis in the strategic environmental assessment of the sugar and alcohol sector. Acta Scientiarum Technology, 34, 303-311. Doi: 10.4025/actascitechnol.v34i3.11525

Pereira, B. L., Almeida J. da S., Farias, I. M., Pires, C. B. S. (2020). Análise das Causas e Soluçães para Administração de Inundações Urbanas na Região da Praça da Bandeira/Rj. Epitaya E-Books, 1(15), 29-48. Recuperado de https://portal.epitaya.com.br/index.php/ebooks/article/view/96

PETTICREW, M. & ROBERTS, H. (2206). Systematic Reviews in the Social Sciences: A Practical Guide. [s.l.] Blackwell Publishing, 2006. DOI: https://doi.org/10.1002/9780470754887

Reis, G.A. Ribeiro, J.A.R. DA Silva, C.A.U. (2020) Diagnóstico de vulnerabilidade socioambiental em áreas urbanas utilizando inteligência geográfica. In: Revista Brasileira de Geografia Física, v. 13, n.02, p. 767-781. https://doi.org/10.26848/rbgf.v13.2.p767-781

PNUD. (2015). Transforming our World: The 2030 Agenda for Sustainable Development. Division for Sustainable Development Goals. New York, USA. Disponível em: https://sdgs.un.org/2030agenda

Reckien, D., Creutzig, F., Fernandez, B., Lwasa, S., Tovar-Restrepo, M., Mcevoy, D., & Satterthwaite, D. (2017). Climate change, equity and the Sustainable Development Goals: an urban perspective. Environment and urbanization, 29(1), 159-182. https://doi.org/10.1177/0956247816677778

Rosenberger, L.; Leandro, J.; Pauleit, S.; Erlwein, S. (2021). Sustainable stormwater management under the impact of climate change and urban densification. Journal of Hydrology, n. 596, p. 11, 1 maio 2021. https://doi.org/10.1016/J.JHYDROL.2021.126137

Salas, J.; Yepes, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook, Journal of Cleaner Production, V. 179, p.544-558, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2018.01.088.

Salimi, M., & Al-Ghamdi, S. G. (2020). Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East. Sustainable Cities and Society, 54, 101948. https://doi.org/10.1016/j.scs.2019.101948

Santos, R. P. & Cortese, T. T. P. (2022). Planejamento Urbano e Desastres: Uma Revisão Sistemática de Literatura PRISMA. Revista Nacional de Gerenciamento de Cidades. ISSN eletrônico 2318-8472, volume 10, número 78.

Schmidt, M. A. R. & Barbosa, G. R. (2016). Use of artificial neural networks in initial ponderation of AHP techniques applied to analysis of watershed vulnerability. Boletim de Ciências Geodésicas, 12, 511-525. https://doi.org/10.1590/S1982-21702016000300029

Shah, M. A. R.; et al., (2020). A review of hydro-meteorological hazard, vulnerability, and risk assessment frameworks and indicators in the context of nature-based solutions, International Journal of Disaster Risk Reduction, V. 50, 101728, ISSN 2212-4209, https://doi.org/10.1016/j.ijdrr.2020.101728.

Shandas, V.; Matsler, A. M.; Caughman, L.; Harris, A. (2020). Towards the implementation of green stormwater infrastructure: perspectives from municipal managers in the Pacific Northwest. Journal of Environmental Planning and Management, v. 63, n. 6, p. 959–980, 2020. DOI 10.1080/09640568.2019.1620708.

Secretaria Nacional de Proteção e Defesa Civil. Ministério da Integração Nacional. (2017). Módulo de formação: noções básicas em proteção e defesa civil e em gestão de riscos. Disponível em: https://defesacivil.es.gov.br/Media/defesacivil/Capacitacao/Material%20Did%C3%A1tico/M%C3%B3dulo%20I/Gest%C3%A3o%20de%20Risco%20-%20Livro%20Base.pdf

Schimidt, M. A. R.; Barbosa, G. R. (2016). Use of artificial neural networks in initial ponderation of AHP techniques applied to analysis of watershed vulnerability, Bol. Ciênc. Geod. 22 (3) Set 2016, https://doi.org/10.1590/S1982-21702016000300029

Schneiderbauer, S., Zebisch, M., Renner, K., Below, T., Brossmann, M., & Schwan, S. (2017). Climate risk and vulnerability analysis applying the IPCC-AR5 concept in practice. In Society for Risk Analysis-Europe (SRA-E). Disponível em: https://www.adaptationcommunity.net/wp-content/uploads/2017/10/GIZ-2017_Risk-Supplement-to-the-Vulnerability-Sourcebook.pdf

Swart, R., Fons, J., Geertsema, W., van Hove, B., Gregor, M., Havranek, M., & UoM, U. P. M. (2012). Urban vulnerability indicators. A joint report of ETC-CCA and ETC-SIA. Copenhagen: ETC-CCA and ETC-SIA Technical Report, 1, 2012. Disponível em: https://core.ac.uk/download/pdf/29222603.pdf

Tapia, C.; Abajo, B.; Feliu, E.; Mendizabal, M.; Martinez, J. A.; Fernández, J. G.; Laburu, T.; Lejarazu, A. (2017). Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities, Ecological Indicators, Volume 78, p. 142-155, ISSN 1470-160X, https://doi.org/10.1016/j.ecolind.2017.02.040.

Thaler, T. et al., (2019). Drivers and barriers of adaptation initiatives – How societal transformation affects natural hazard management and risk mitigation in Europe, Science of The Total Environment, V. 650, Part 1, p.1073-1082, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2018.08.306.

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence‐informed management knowledge by means of systematic review. British journal of management, 14(3), 207-222. https://doi.org/10.1111/1467-8551.00375.

Timmerman, J., Bacciu, V., Coninx, I., Fons, J., Gregor, M., Havranek, M., Jacobs, C., Loehnertz, M., Pelton, L., Sainz, M., Swart, R., Lindner, C., Lückenkotter, J. (2016). Map book urban vulnerability to climate change–Factsheets. In: European Environment Agency, European Topic Centre on Climate Change Impacts, Vulnerability and Adaptation. European Topic Centre on Spatial Information and Analysis, p. 98. Disponível em: https://climate-adapt.eea.europa.eu/repository/fact-sheets-final-27_06_2017.pdf/view

United Nations (UN). (2015). Trasforming our world: The 2030 Agenda for sustainable development. Disponível em: https://sdgs.un.org/2030agenda

UNFCCC. (2015). Adoption of the Paris Agreement. UN Framework Convention on Climate Change. Bonn, Germany, 2015. Disponível em: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf, Acesso em: julho, 2022.

United Nations International Strategy for Disaster Reduction. (2005) Hyogo Framework for Action 2005–2015: Building the resilience of nations and communities to disasters. Geneva: UNISDR. Disponível em: https://www.unisdr.org/2005/wcdr/intergover/official-doc/L-docs/Hyogo-framework-for-action-english.pdf

UNISDR. (2015). Sendai Framework for Disaster Risk Reduction 2015–2030. United United Nations Office for Disaster Risk Reduction. Switzerland, 2015. Disponível em: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030

United Nations Office for Disaster Risk Reduction. (UNDRR). (2019). Global assessment report on disaster risk reduction. Disponível em: https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2019

United Nations Office for Disaster Risk Reduction. (UNDRR). (2021). Words into Action guidelines: Developing national disaster risk reduction strategies. Switzerland, 2021. Disponível em: https://www.preventionweb.net/go/74082. Acesso em: julho/2021.

Vasconcelos, A. E. F. de; Cândido, G. A.; Freire, E. M. X. (2019). Vulnerabilidade Socioambiental: proposição de temas e indicadores para cidades brasileiras. Gaia Scientia. 13(2), 1-18.

Voskamp I. M., Van de Ven F.H.M. (2015). Planning support system for climate adaptation: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events. Building and Environment, 83, 159-167. https://doi.org/10.1016/j.buildenv.2014.07.018

Weiss, R. & Pippi, L. G. (2019). Análise multicritério na definição de vulnerabilidade ambiental. TerraPlural, 13, 272-295. DOI: 10.5212/TerraPlural.v.13i3.0018

Wolf, T., & McGregor, G. (2013). The development of a heat wave vulnerability index for London, United Kingdom. Weather and Climate Extremes, 1, 59-68. https://doi.org/10.1016/j.wace.2013.07.004

World Bank (2014). Guide to Climate Change Adaptation in Cities. World Bank, Washington, DC. Disponível em: https://documents1.worldbank.org/curated/en/691721468320045373/pdf/653590WP0v200B0Urban0Handbook0Final.pdf

Published

2023-07-03

How to Cite

Vissirini, F. S. B., dos Reis, P. T. B., da Cunha, F. P., Gondim, F. R., Ohnuma Jr., A. A., & Johnson, R. M. F. (2023). Urban vulnerability and the tools required for hydro-meteorological risk disaster management. Revista De Gestão Ambiental E Sustentabilidade, 12(2), e22616. https://doi.org/10.5585/geas.v12i2.22616

Issue

Section

Mudanças climáticas e planejamento urbano: cenários e desafios