Uma nova abordagem usando simulação de modelos físicos com realidade aumentada para o ensino em engenharia elétrica: um estudo de caso usando eletromagnetismo

Autores

DOI:

https://doi.org/10.5585/50.2024.27417

Palavras-chave:

educação engenharia elétrica, simulação modelo físico, realidade aumentada, eletromagnetismo

Resumo

Este estudo avalia uma nova abordagem educacional utilizando realidade aumentada para simular modelos físicos, visando aprimorar a aprendizagem percebida em engenharia elétrica. É realizada uma revisão da literatura sobre realidade aumentada na educação, particularmente para engenharia elétrica. Uma aula em eletromagnetismo sobre Lei de Coulomb, Campos Elétricos e Forças Elétricas foi ministrada usando este método para uma turma de 39 alunos. Um questionário pré/pós-exposição mediu as mudanças na percepção do aluno, e a Pontuação de Usabilidade do Sistema mede a usabilidade do aplicativo móvel. Os resultados mostram uma melhor percepção dos alunos sobre os resultados da aprendizagem. O estudo também oferece direções de pesquisas futuras e sugestões para melhorar o método proposto.

CROSSMARK_Color_horizontal.svg

Downloads

Não há dados estatísticos.

Biografia do Autor

Natan Menegasse, Universidade Nove de Julho

Mestre em Informática e Gestão do Conhecimento

Cleber Dias, Universidade Nove de Julho

Doutor em Engenharia Elétrica Professor e Pesquisador do PPGI – Mestrado e Doutorado em Informática e Gestão do Conhecimento

Referências

ALTMEYER, K. et al. The use of augmented reality to foster conceptual knowledge acquisition in STEM laboratory courses – Theoretical background and empirical results. British Journal of Educational Technology, v. 51, n. 3, p. 611–628, 2020. DOI: https://doi.org/10.1111/bjet.12900.

Disponível em: https://bera-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/bjet.12900. Acesso em: 10 nov. 2023.

ALVAREZ-MARIN, A.; VELAZQUEZ-ITURBIDE, J. A. Augmented Reality and Engineering Education: A Systematic Review. IEEE Transactions On Learning Technologies, v. 14, n. 6, p. 817–831, 2021. DOI: https://doi.org/10.1109/tlt. 2022.3144356.

ÁLVAREZ-MARÍN, A.; VELÁZQUEZ-ITURBIDE, J. A.; CASTILLO-VERGARA, M. Technology Acceptance of an Interactive Augmented Reality App on Resistive Circuits for Engineering Students. Electronics, v. 10, n. 11, 2021a. DOI: 10.3390/electronics10111286. Disponível em: https://www.mdpi.com/2079-9292/10/11/1286. Acesso em: 7 fev. 2023.

ÁLVAREZ-MARÍN, A.; VELÁZQUEZ-ITURBIDE, J. A.; CASTILLO-VERGARA, M. The acceptance of augmented reality in engineering education: the role of technology optimism and technology innovativeness. Interactive Learning Environments, p. 1–13, 2021b. DOI: https://doi.org/10.1080/10494820.2021. 1928710. Disponível em: https://www.tandfonline.com/doi/pdf/10.1080/10494820.2021.1928710casa_token=VGW_NpQnmIQAAAAA:Jnle2u9v3DbupoHn6pTaYNbuL7Ns4xXuTmQeym8AJgmUAgYzgnL2Qr51pcGWiS52MApiKpGKUSHrzras0g. Acesso em: 4 abr. 2023

ANDERSON, L.W. et al. A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. [S.l.]: New York: Longman, 2001.

AVILES-CRUZ, C.; VILLEGAS-CORTEZ, J. A smartphone-based augmented reality system for university students for learning digital electronics. Computer Applications In Engineering Education, v. 27, n. 3, p. 615–630, 2019. DOI: https://doi.org/10.1002/cae.22102.

BANGOR, A.; KORTUM, P.; MILLER, J. Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale. J. Usability Studies, Usability Professionals’ Association, Bloomingdale, IL, v. 4, n. 3, p. 114–123, May 2009.

BAZZO, W. A.; PEREIRA, L. T. V. Introdução à Engenharia: conceitos, ferramentas e comportamentos. Ed. da UFSC, 2006. [S.l.]: Editora da UFSC, 2006.

BLOOM, B. S. et al. Taxonomy of Educational Objectives: The Classification of Educational Goals. [S.l.]: New York: David McKay Company, 1956.

BRASIL. Resolução nº 2, de 24 de abril de 2019. Institui as Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia. Brasília, DF: Ministério da Educação- Conselho Nacional de Educação. Disponível em: https://normativasconselhos.mec.gov.br/normativa/view/CNE_RES_CNECESN22019.pdf. Acesso em: 20 out. 2024.

BROOKE, J. SUS: A quick and dirty usability scale. Usability Eval. Ind., v. 189, Nov. 1995.

CHU, Y. B. A mobile augmented reality system to conduct electrical machines laboratory for undergraduate engineering students during the COVID pandemic. Education and Information Technologies, 2022. DOI: https://doi.org/10.1007/s10639-022-10987-9.

ESTRADA, J. et al. Deep-Learning-Incorporated Augmented Reality Application for Engineering Lab Training. Applied Sciences, v. 12, n. 10, 2022. DOI: https://doi.org/10.3390/app12105159.

FARIDI, H. et al. A framework utilizing augmented reality to improve critical thinking ability and learning gain of the students in Physics. Computer Applications in Engineering Education, v. 29, n. 1, p. 258–273, 2021. DOI: https://doi.org/10.1002/cae.22342.

KAPP, S. et al. Smart Sensors for Augmented Electrical Experiments. Sensors, v. 22, n. 1, 2022. DOI: https://doi.org/10.3390/s22010256. Cit. on pp. 4, 13.

KAUR, D. P.; MANTRI, A.; HORAN, B. Design implications for adaptive augmented reality based interactive learning environment for improved concept comprehension in engineering paradigms. Interactive Learning Environments, v. 30, n. 4, p. 589–607, 2022. DOI: https://doi.org/10.1080/10494820.2019.1674885.

KUMAR, A.; MANTRI, A.; DUTTA, R. Development of an augmented reality-based scaffold to improve the learning experience of engineering students in embedded system course. Computer Applications in Engineering Education, v. 29, n. 1, p. 244–257, 2021. DOI: https://doi.org/10.1002/cae.22245.

MARTÍN-GUTIÉRREZ, J. et al. Augmented reality to promote collaborative and autonomous learning in higher education. Computers in Human Behavior, v. 51, p. 752–761, 2015. DOI: https://doi.org/10.1016/j.chb.2014.11.093.

MASSA, A. et al. Teaching Electromagnetics to Next-Generation Engineers—The ELEDIA Recipe: The ELEDIA teaching style. IEEE Antennas and Propagation Magazine, v. 62, n. 2, p. 50–61, 2020. DOI: https://doi.org/10.1109/ MAP.2020.2970307.

MILGRAM, P.; KISHINO, F. A Taxonomy of Mixed Reality Visual Displays. IEICE Transaction on Information and Systems, vol. E77-D, no. 12, p. 1321–1329, 1994.

MOTEJLEK, J.; ALPAY, E. Taxonomy of Virtual and Augmented Reality Applications in Education. IEEE Transactions on Learning Technologies, v. 14, n. 3, p. 415–429, 2021. DOI: https://doi.org/10.1109/tlt.2021.3092964.

NOGUEIRA, J. Robert; ALVES, Ricardo; MARQUES, P. Carmona. Computational Programming as a Tool in the Teaching of Electromagnetism in Engineering Courses: Improving the Notion of Field. Education Sciences, v. 9, 2019. DOI: https://doi.org/10.3390/educsci9010064. Disponível em: https://www.mdpi.com/2227-7102/9/1/64. Acesso em: 10 nov. 2023.

RAHMAN, H. Pedagogical Approach to Teaching a First Course in Engineering Electromagnetics. Interna- tional Journal for Innovation Education and Research, v. 2, p. 25–29, Mar. 2014. DOI: https://doi.org/10.31686/ijier.vol2.iss3.153.

ROSENBAUM, F.J. et al. Teaching electromagnetics around the world: a survey. IEEE Transactions on Education, v. 33, n. 1, p. 22–34, 1990. DOI: https://doi.org/10.1109/13.53624.

SANDOVAL, S. P. et al. On the Use of Augmented Reality to Reinforce the Learning of Power Electronics for Beginners. Electronics, v. 11, n. 3, 2022. DOI: https://doi.org/510.3390/electronics11030302. Disponível em: https://www.mdpi.com/2079-9292/11/3/302. Acesso em: 10 jun. 2023.

TIRADO-MORUETA, R. et al. Exploratory study of the acceptance of two individual practical classes with remote labs. European Journal of Engineering Education, v. 43, n. 2, p. 278–295, 2018. DOI: https://doi.org/10.1080/03043797. 2017.1363719.

VERGARA, D.; RUBIO, M. P.; LORENZO, M. On the Design of Virtual Reality Learning Environments in Engineering. Multimodal Technologies and Interaction, v. 1, n. 2, 2017. DOI: https://doi.org/10.3390/mti1020011.

YENER, Y.; HALIL, Y. Augmented reality application in engineering education: N-Type

MOSFET. The International Journal of Electrical Engineering & Education, p. 1–13, 2020. DOI: https://doi.org/10.1177/0020720920954150.

Downloads

Publicado

27.11.2024

Como Citar

MENEGASSE, Natan; DIAS, Cleber. Uma nova abordagem usando simulação de modelos físicos com realidade aumentada para o ensino em engenharia elétrica: um estudo de caso usando eletromagnetismo. Dialogia, [S. l.], n. 50, 2024. DOI: 10.5585/50.2024.27417. Disponível em: https://uninove.emnuvens.com.br/dialogia/article/view/27417. Acesso em: 16 dez. 2024.