Monte Carlo simulation: a tool for risk analysis in project management

Authors

DOI:

https://doi.org/10.5585/gep.v15i3.26721

Keywords:

Risk, Monte Carlo, Modeling, Planning, Project management, Project

Abstract

In a competitive environment, organizations constantly seek opportunities for improvement and reassess their business models due to the challenges they face. Consequently, project risk arises from the uncertainty regarding expected outcomes, such as timelines and costs. Risk analysis is a tool in risk management and can be qualitative or quantitative, depending on the available resources. The Monte Carlo Simulation (MCS) is a widely used method, especially for risks related to schedule delays and cost overruns. In this context, the present work focuses on a case study of a risk analysis applying MCS in project schedule risk management. The objectives include contextualizing the importance of risk analysis, examining the theoretical basis of the Monte Carlo method, conducting a risk analysis on a project, and developing a risk analysis program in Python. The justification for this study lies in the need to improve the success rate of construction projects, which often exceed deadlines and budgets. Overall, the study contributes to a more effective approach to project management, adapting to the constantly evolving market demands. The results indicate a 5% probability that the project will be completed in 590 days and a 95% probability of completion in 669 days. This information allows stakeholders to better understand how the schedule can be affected by risks and to take measures to mitigate these impacts in advance.

CROSSMARK_Color_horizontal.svg

Author Biographies

Lusianny Pereira Herzog, Federal University of Pelotas

Graduated in Production Engineer, master’s in Mathematical Modeling. The research and projects developed are in area of planning and risk management.

Everson Jonatha Gomes da Silva , Federal University of Pampa

Graduated in Mathematics, master's and PhD in Mechanical Engineering. He is currently a Professor at the Federal University of Pampa. The research and projects developed are in the area of transport phenomena.

Guilherme Jahnecke Weymar, Federal University of Pelotas

Graduated in Mathematics, master's and PhD in Mechanical Engineering. He is currently a Professor at the Engineering Center and participates in the PPGMMat at the Federal University of Pelotas. The research and projects developed are in the area of transport phenomena.

References

Adedokun, O. A., Ibironke, O. T., Dairo, D. O., Aje, I. O., Awodele, O. A., Opawole, A. D., Akinradewo, O. F., & Abiola-Falemu, J. O. (2013). Evaluation of quantitative risk analysis techniques in selected large construction companies in Nigeria. Journal of Facilities Management, 11(4), 354–368. https://doi.org/10.1108/JFM-11-2012-0053

Aguiar, G. de, Alves, C. da C., & Henning, E. (2010). Gerenciamento de projetos: simulação de Monte Carlo via a ferramenta simular. In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO - ENEGE, 30., 2010, São Carlos. Anais Eletronicos... São Carlos: Associação Brasileira de Engenharia de Produção.

Amorim, F. R. de, Abreu, P. H. C. de, Patino, M. T. O., & Terra, L. A. A. (2018). Análise dos Riscos em Projetos: Uma Aplicação do Método de Monte Carlo em uma Empresa do Setor Moveleiro. Future Studies Research Journal: Trends and Strategies, 10(2), 332–357. https://doi.org/10.24023/futurejournal/2175-5825/2018.v10i2.314

Arashpour, M., Wakefield, R., Lee, E. W. M., Chan, R., & Hosseini, M. R. (2016). Analysis of interacting uncertainties in on-site and off-site activities: Implications for hybrid construction. International Journal of Project Management, 34(7), 1393–1402. https://doi.org/10.1016/j.ijproman.2016.02.004

Araújo, N. M. C., Avelino, L. D. L., & Araujo, V. D. S. (2018). Planejamento e controle na execução de obras de edificações verticais:um estudo multicaso na cidade de João Pessoa-PB quanto à compatibilização. Revista Principia - Divulgação Científica e Tecnológica Do IFPB, 1(43), 32. https://doi.org/10.18265/1517-03062015v1n43p32-39

Ayala-Cruz, J. (2016). Planificación de Riesgos en Proyectos para el Desarrollo de Nuevos Productos de Alta Tecnología. Academia Revista Latinoamericana de Administracion, 29(2), 110–124. https://doi.org/10.1108/ARLA-11-2015-0297

Corrar, L. J. (1993). O modelo econômico da empresa em condições de incerteza aplicação do método de simulação de Monte Carlo. Caderno de Estudos, d(8), 01–11. https://doi.org/10.1590/s1413-92511993000100004

Correia Neto, J. F. C., & de Moura, H. J. (2002). Modelo prático de previsão de fluxo de caixa operacional para empresas comerciais considerando os efeitos do risco, através do método de Monte Carlo. 8(3), 1–11.

Dobrow, R. P. (2016). Introduction to Stochastic Processes with R. John Wiley & Sons, Inc.

Dziadosz, A., & Rejment, M. (2015). Risk Analysis in Construction Project - Chosen Methods. Procedia Engineering, 122(December), 258–265. https://doi.org/10.1016/j.proeng.2015.10.034

Eiras, F. C. da S., Tomomitsu, H. T. A., Linhares, I. M. P., & de Carvalho, M. M. (2017). Evolution of project management research: a bibliometric study of International Journal of Project Management. Revista Gestão Da Produção Operações e Sistemas, 12(1), 211–234. https://doi.org/10.15675/gepros.v12i1.1617

Cavalcante Filho, J. U. D. P. (2019). Avaliação de riscos com simulação de Monte Carlo em obras de grande porte (Dissertação - Mestrado em Engenharia Civil). Programa de Pós-Graduação em Engenharia Civil: Estruturas e Construção Civil da Universidade Federal do Ceará

Fontes, M. F. C. (2012). Mapeamento e análise do processo de gerenciamento de projetos e obras públicas: Um estudo de caso na Universidade Federal de Viçosa-MG (Dissertação de Mestrado).

Halawa, W. S., Abdelalim, A. M. K., & Elrashed, I. A. (2013). Financial evaluation program for construction projects at the pre-investment phase in developing countries: A case study. International Journal of Project Management, 31(6), 912–923. https://doi.org/10.1016/j.ijproman.2012.11.001

Hendradewa, A. P. Schedule Risk Analysis by Different Phases of Construction

Project Using CPM-PERT and Monte-Carlo Simulation. , 2019.

Hopkinson, M. (2011). Monte Carlo Schedule Risk Analysis-a process for developing rational and realistic risk models. Risk Management Capability.

Hulett, D. T. (1996). Schedule Risk Analysis Simplified. In PM Network, 10(7), 25–32. www.projectrisk.com.

Kalos, M. H., & Whitlock, P. A. (2008). Monte Carlo Methods (2th Ed.). WILEY-VCH Velarg Gmbh &Co.

Kerzner, H. (2009). Project management: a systems approach to planning, scheduling, and controlling (10th Ed). John Wiley & Sons, Inc.

Loizou, P., & French, N. (2012). Risk and uncertainty in development: A critical evaluation of using the Monte Carlo simulation method as a decision tool in real estate development projects. Journal of Property Investment and Finance, 30(2), 198–210. https://doi.org/10.1108/14635781211206922

Maletta, B. V. (2005). Bruno Vasques Maletta Modelos baseados em Simulação de Monte Carlo : Soluções para o cálculo do Value-at-Risk (Dissertação de Mestrado)

Mendes, J. R. B., do Valle, A. B., & Fabra, M. (2009). Gerenciamento de Projetos.

Mendes, N. (2011). Estrutura de Custos de Edifícios de Habitação. 86.

Pinto, I. C. M. D. S. (2017). Análise Dos Riscos Presentes Nos Custos Da Construção Civil Pelo Método Monte Carlo (Dissertação de Mestrado). In Universidade Federal Do Ceará. Universidade Federal Do Ceará.

Poh, Y. P., & Tah, J. H. M. (2006). Integrated duration-cost influence network for modelling risk impacts on construction tasks. Construction Management and Economics, 24(8), 861–868. https://doi.org/10.1080/01446190600658891

Poudel, A., Damnjanovic, I., Van Tang, Q., & Valenzuela, R. (2022). Risk-Based Multi-Objective Cross-Asset Budget Planning and Allocation Framework for the City of Sugar Land Integrated Asset Management System (IAMS). Public Works Management and Policy, 27(1), 5–28. https://doi.org/10.1177/1087724X211046629

Project Management Institute. (2021). The standard for project management and a guide to the project management body of knowledge (PMBOK guide).

Pytel, W., Fuławka, K., Pałac-Walko, B., MERTUSZKA, P., KISIEL, J., JALAS, P., JOUTSENVAARA, J., & SHEKOV, V. (2020). Universal approach for risk identification and evaluation in underground facilities. Mining Science, 27, 165–181. https://doi.org/10.37190/MSC202712

Renata, T. T. (2016). Análise de risco na metodologia pert/cpm aplicado na construção civil (Trabalho de Conclusão de Curso). Universidade Federal da Grande Dourados (UFGD)

Ross, S. (2010). A First Course in Probability. In Technometrics (Vol. 40, Issue 3). https://doi.org/10.2307/1271207

Rubinstein, R. Y., & Kroese, D. P. (2017). Simulation and the monte carlo method (Third Ed.). John Wiley & Sons, Inc.

Souza, J. S. De. (2011). Modelo para identificação e gerenciamento do grau de risco de empresas - MIGGRI. (Dissertação de Doutorado).Universidade Federal do Rio Grande do Sul - UFRGS.

Souza, L. C. L. de, Almeida, M. G. de, & Bragança, L. (2011). Econometria básica. In Mqa.

Titman, S., & Martin, J. H. (2009). Valuation: Avaliação de Projetos e Investimentos.

Wu, B., Qiu, W., Huang, W., Meng, G., Huang, J., & Xu, S. (2021). Dynamic risk evaluation method for collapse disasters of drill-and-blast tunnels: A case study. Mathematical Biosciences and Engineering, 19(1), 309–330. https://doi.org/10.3934/mbe.2022016.

Xavier, C. M. da S. (2011). Metodologia De Gerenciamento De Projetos. Ministério Do Planejamento, Orçamento e Gestão. Secretaria de Logística e Tecnologia Da Informação, 7.

Xu, R., & Wunsch II, D. C. (2009). Clustering. a john wiley & sons, inc.

Yin, R. K. (2001). Estudo de Caso: Planejamento e Métodos (2.Ed). Bookman.

Published

2024-12-09

How to Cite

Herzog, L. P., Silva , E. J. G. da, & Weymar, G. J. (2024). Monte Carlo simulation: a tool for risk analysis in project management. Revista De Gestão E Projetos, 15(3), 542–565. https://doi.org/10.5585/gep.v15i3.26721
Views
  • Abstract 119
  • pdf (Português (Brasil)) 104