Recognition of urban green space ecosystem services for adaptation to extreme climate events

methodological validation

Authors

  • Fabiany Sampaio Bertucci Tavares Universidade Federal de Mato Grosso do Sul - UFMS / Campo Grande – MS
  • Eliane Guaraldo Universidade Federal de Mato Grosso do Sul – UFMS / Campo Grande (MS) https://orcid.org/0000-0003-2526-1293
  • Ivan Bergier Tavares de Lima Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA / São Paulo (SP)

DOI:

https://doi.org/10.5585/2024.23959

Keywords:

ecohidrology, urban forest, heat islands, parks, urban planning

Abstract

Objective: This study evaluated the ecosystem services of water regulation (EvapoTranspiration, ET) and Forest Carbon Stock (ECF) in the urban area of Campo Grande based on mapping and random sampling stratification of diameters at breast height (DBH or simply d) per unit area in five types of Urban Green Spaces (EVU).

Methodology: The evaluation of ecosystem services for water regulation ET and ECF in the urban area of Campo Grande was based on mapping and random sampling stratification of diameters at breast height (DBH or simply d) per unit area in five EVU typologies. By integrating d data - its distribution follows a Power Law - with the ecohydrological concepts and the Ecological Metabolic Theory (EMT), the medians and interquartile ranges for ET and ECF of the identified EVU typologies were then calculated.

Originality/Relevance: Despite the importance of ecosystem services in cities, few studies show methodologies to evaluate and quantify them. The present study brings an unprecedented approach to estimate ECF and ET in EVU with typical cerrado tree vegetation. The methodology is used to prospect the impact of the increase in EVU area and its ecosystem services (ECF and ET) on Carbon (C) capture and the water and thermal regulation. Therefore, the methodology aims on the security of urban citizens from tropical regions against future scenarios of extreme (episodic) flood and wave events or (persistent) heat islands.

Results: The mapping of EVU and their respective ecosystem services in Campo Grande showed the deficiency of these environments in certain parts of the city. Currently, the EVU areas in Campo Grande sum up to 898 hectares (2.5% of the urban area in 2010), which store between 33,368.5 and 456,801.7 tons of C in the form of forest biomass and they are responsible for daily atmospheric humidification on a scale of 31,458.0 to 105,277.3 m3 of water. The study also reveals that ecosystem regulation services such as ecohydrological concepts like Forest Carbon Stock (ECF) and Evapotranspiration (ET) in the urban area can be estimated by integrating DBH data (d). The results suggest that the scaling of EVU from 2.5 to 10% of the urban area in Campo Grande may have important consequences for the adaptation of future urban generations and for the mitigation of climate change.

Theoretical/methodological contributions: Statistical analyzes show that the values obtained with the field survey can be modeled by the distributions of power law through the Ecological Metabolic Theory (TME). It was found that the TME has great application potential, but also limitations, as it allows evaluating flows and stocks in a system only for intervals (interquartiles) that contain the average of the distribution. The use of the interquartile to evaluate natural processes with a power law distribution guarantees a reliable margin of uncertainty, which can be scaled independently of the woody species and its successional stage, seasonality and environment.

Social / management contributions: The results show the importance of increasing these spaces to maximize the realization of ecosystem services for atmospheric C capture, as well as for adapting urban areas to face extreme floods, heat waves and for the prevention of urban heat islands (IUC). In addition, future studies should be conducted for the geolocation of new EVU that maximize ecosystem services, which also incorporate sociocultural aspects.

Downloads

Download data is not yet available.

Author Biographies

Fabiany Sampaio Bertucci Tavares, Universidade Federal de Mato Grosso do Sul - UFMS / Campo Grande – MS

MsC in Natural Resources

Eliane Guaraldo, Universidade Federal de Mato Grosso do Sul – UFMS / Campo Grande (MS)

PHD in Urban Environmental Structures

Ivan Bergier Tavares de Lima, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA / São Paulo (SP)

PhD in Sciences – Nuclear Energy in Agriculture

References

Bergier, I. et al. (2018). Amazon rainforest modulation of water security in the Pantanal wetland. Science of The Total Environment. 619–620: 1116-11251. DOI: 10.1016/j.scitotenv.2017.11.163

Bergier, I., Salis, S. M., & Mattos, P. P. (2016). Metabolic scaling applied to native woody savanna species in the Pantanal of Nhecolândia. In I. Bergier, & M. L. Assine, (Eds.), Dynamics of the Pantanal Wetland in South America. (The Handbook of environmental chemistry, v. 37) (pp. 133-144). Switzerland: Springer International Publishing. DOI: 10.1007/698_2014_326

BRASIL. Ministério do Meio Ambiente. SNUC – Sistema Nacional de Unidades de Conservação da Natureza: Lei nº 9.985, de 18 de julho de 2000; Decreto nº 4.340, de 22 de agosto de 2002; Decreto nº 5.746, de 5 de abril de 2006. Plano Estratégico Nacional de Áreas Protegidas: Decreto nº 5.758, de 13 de abril de 2006. Brasília: MMA, 2011.

Bustamante, M. M. C., Nardoto, G. B., Pinto, A. S.; Resende, J. C. F., Takahashi, F. S. C., & Vieira, L. C. G. (2012). Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems. Brazilian Journal of Biology, São Carlos, 72(3): 655-671. DOI:10.1590/S1519-69842012000400005.

Coomes, D. A., & Allen, R. B. (2009). Testing the Metabolic Scaling Theory of tree growth. Journal of Ecology, 97: 1369-1373. DOI: 10.1111/j.1365-2745.2010.01719.x

Coomes, D.A, Lines, E.R., & Allen, R.B. (2011). Moving on from metabolic scaling theory: hierarchical models of tree growth and asymmetric competition for light. Journal of Ecology, 99: 748–756. DOI: 10.1111/j.1365-2745.2011.01811.x

Davies, Z. G., Dallimer, M., Edmondson, J. L., Leake, J. R., & Gaston, K. J. (2013). Identifying potential sources of variability between vegetation carbon storage estimates for urban areas. Environmental Pollution., 183: 133-142. DOI: 10.1016/j.envpol.2013.06.005

Escobedo F., Varela, S., Zhao, M., Wagner, J. E., & Zipperer, W. (2010). Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities. Environmental Science & Policy 13(5): 362-372. DOI: 10.1016/j.envsci.2010.03.009

Enquist, B. J., & Bentley, L. P. (2012). Land Plants: New Theoretical Directions and Empirical Prospects. Metabolic Ecology: A Scaling Approach. John Wiley and Sons. https://doi.org/10.1002/9781119968535.ch14.

Enquist, B. J., Brown, J. H., & West G. B. (1998). Allometric scaling of plant energetics and population density. Nature, 395: 163-165. DOI: 10.1038/25977.

Enquist, B. J. et al. (2015). Scaling from Traits to Ecosystems: Developing a General Trait Driver Theory via Integrating Trait-Based and Metabolic Scaling Theories. Advances in Ecological Research, 52: 249-318. DOI: 10.1016/bs.aecr.2015.02.001

Hammer, Ø., Harper D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1): 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

Hansen, J., Sato, M., & Ruedy R. (2012). Perception of climate change. PNAS ∣: E2415–E2423. Disponível em: <https://www.pnas.org/content/109/37/E2415>. DOI: 10.1073/pnas.1205276109

Higa, R. C. V., Cardoso D. J., Andrade, G. de C., Zanatta, J. A., Rossi, L. M. B., Pulrolnik, K., Nicodemo, M. L. F., Garrastazu, M. C., Vasconcelos, S. S., & Salis, S. M. (2014). Protocolo de medição e soma de biomassa e carbono florestal. EMBRAPA Florestas. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1011409/protocolo-de-medicao-e-estimativa-de-biomassa-e-carbono-florestal.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Censo Brasileiro de 2010. Rio de Janeiro: IBGE, 2012.

Kabisch, N., Qureshi, S., & Haase D. (2015). Human–environment interactions in urban green spaces — A systematic review of contemporary issues and prospects for future research. Environmental Impact Assessment Review 50: 25-34. DOI: 10.1016/j.eiar.2014.08.007.

Kalberer P., & Walker M. (1994). Open Layers plugin for QGIS. Disponível em: https://github.com/sourcepole/qgis-openlayers-plugin. Acesso: 09 de maio de 2019. NIKLAS, K. Plant Allometry: The Scaling of Form and Process. Niklas, Karl. Bibliovault OAI Repository, the University of Chicago Press.

Niemela, J. (2014). Ecology of urban green spaces: The way forward in answering major research questions. Landscape and Urban Planning 125: 298–303. DOI: 10.1016/j.landurbplan.2013.07.014

Nowak, D. J. (1994). Atmospheric carbon dioxide reduction by Chicago's urban forest. In E. G. McPherson, D. J. Nowak, R. A. Rowntree, (Eds.), Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. General Technical Report (pp. 83–94). https://www.fs.usda.gov/psw/topics/urban_forestry/products/cufr_57_EM95_25.pdf

Nowak, D. J., & Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 116: 81-389. DOI: 10.1016/S0269-7491(01)00214-7

ONU – Nações Unidas no Brasil. (2018). Objetivo de Desenvolvimento Sustentável (ODS) 11. DOCUMENTOS TEMÁTICOS. p. 47. Brasília.

PLANURB - Agência Municipal de Meio Ambiente e Planejamento Urbano (2017). Perfil Socioeconômico de Campo Grande/Instituto Municipal de Planejamento Urbano – PLANURB. 24. Ed. Rev. Campo Grande.

QGIS Development Team (2018). QGIS Geographic Information System. Open Source Geospatial Foundation Project. Disponível em: <http://qgis.osgeo.org>

Salis, S. M., Lehn, C. R., Mattos, P. P., Bergier, I., & Crispim, S. M. A. (2014). Root behavior of savanna species in Brazil’s Pantanal wetland. Global Ecology and Conservation 2: 378-384. DOI: 10.1016/j.gecco.2014.10.009

Sampath, S. (2005). Sampling Theory and Methods. Alpha Science International. Harrow, UK. Ed. 2.

Tavares, F. S. B., Bergier, I., & Guaraldo, E. (2021). Análise cienciométrica de espaços verdes urbanos e seus serviços ecossistêmicos. Interações (Campo Grande), 22(1): 103-114. DOI: 10.20435/inter.v22i1.2596

West, G. B., Brown, J. H., & Enquist, B. J. A (1997). General Model for the Origin of Allometric Scaling Laws in Biology. Science, 276: 122-126. DOI: 10.1126/science.276.5309.122

West G. B., Enquist B. J., & Brown J. H. (2009a). A general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences (PNAS) 106(17): 7040-7045. DOI: 10.1073/pnas.0812294106.

West G. B., Enquist B. J., & Brown J. H. (2009b). Extensions and evaluations of a general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences (PNAS) USA, 106(17): 7046–7051. DOI: 10.1073/pnas.0812303106

Published

2024-02-29

How to Cite

Sampaio Bertucci Tavares, F., Guaraldo, E., & Bergier Tavares de Lima, I. (2024). Recognition of urban green space ecosystem services for adaptation to extreme climate events: methodological validation. Revista De Gestão Ambiental E Sustentabilidade, 13(1), e23959. https://doi.org/10.5585/2024.23959