SUSTAINABLE RESEARCH METHODOLOGY ON THE EFFECT OF THE REUSE OF BLACK LIQUOR IN THE ALKALINE PRE-TREATMENT OF GARDEN RESIDUES FOR THE PRODUCTION OF BIOGAS
DOI:
https://doi.org/10.5585/geas.v8i3.15780Keywords:
Methodology, Sustainability, Biogas, Methane, Lignin, Lignocellulose.Abstract
Biogas is an important renewable source of energy, which converts organic material into energy. Lignocellulosic biomass emerges as a strategy to increase biogas production through pre-treatments that provide organic matter to the anaerobic environment. Among the chemical pre-treatments available, the alkaline is the most used one because it presents the highest yield in biogas production. However, the effluent (black liquor) it generates is an alkaline byproduct that, if disposed irregularly, can cause environmental problems. In this context, the objective of the present study is to present the methodology employed to evaluate the effect of alkaline pre-treatment with potassium hydroxide solution (KOH) applied to garden waste in the production of biogas and the reuse of black liquor as a new alkaline medium. The pre-treatment was divided into seven subsequent batches, with the first batch consisting of a 5% KOH solution and dry and crushed substrate (garden pruning waste). For the other batch the black liquor from the liquid fraction of the separation process was reused. The Biochemical Methane Potential (BMP) tests were carried out with the fraction sifted in mesophilic conditions (35° C) for 25 days, following the German standard VDI 4630. The results showed that the second batch had the highest biogas production (620 LN biogas/VS-1 kg) and an efficiency of 30% when compared to the non-pretreated substrate. A positive effect was also observed in the biogas yield after reusing the black liquor twice, presenting an average efficiency of 20%. In this sense, this study demonstrates that the reuse of the remaining black liquor from pre-treatment with KOH is a viable and sustainable technique for pre-treatment of garden waste and contributes to the reduction of costs in real scale.
Downloads
References
Adekunle, K. F., & Okolie, J. A. (2015). A Review of Biochemical Process of Anaerobic Digestion. Advances in Bioscience and Biotechnology, 06(03), 205–212. https://doi.org/10.4236/abb.2015.63020
Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas Handbook. Retrieved from www.lemvigbiogas.com
Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
APHA (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.
Aslanzadeh, S., Berg, A., Taherzadeh, M. J., & Sárvári Horváth, I. (2014). Biogas production from N-Methylmorpholine-N-oxide (NMMO) pretreated forest residues. Applied Biochemistry and Biotechnology, 172(6), 2998–3008. https://doi.org/10.1007/s12010-014-0747-z
Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34(5), 551–573. https://doi.org/10.1016/j.pecs.2007.11.001
Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106. https://doi.org/10.1016/j.rser.2014.04.047
Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Research, 2011, 787532. https://doi.org/10.4061/2011/787532
Chen, W. H., Pen, B. L., Yu, C. T., & Hwang, W. S. (2011). Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technology, 102(3), 2916–2924. https://doi.org/10.1016/j.biortech.2010.11.052
Deutsches Institut Für Normung (1985). DIN 38414: Determination of the amenability to anaerobic digestion. In: DIN, Berlin, Germany.
Jiang, Y.; Heaven, S.; Banks, C.J.; 2012. Strategies for stable anaerobic digestion of vegetable waste. Renewable Energy 44, 206–214, 2014.
Galbiatti, J.A.; Caramelo, A.D.; Silva, F.G.; Gerardi, E.A.B.; Chiconato,D.A. Estudo qualiquantitativo do biogás produzido por substratos em biodigestores tipo batelada. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 14, n°4, Campina Grande, 2010.
Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18. https://doi.org/10.1016/j.biortech.2008.05.027
Hosseini Koupaie, E., Dahadha, S., Bazyar Lakeh, A. A., Azizi, A., & Elbeshbishy, E. (2018). Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. Journal of Environmental Management, 233(September), 774–784. https://doi.org/10.1016/j.jenvman.2018.09.106
Liew, L. N., Shi, J., & Li, Y. (2011). Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresource Technology, 102(19), 8828–8834. https://doi.org/10.1016/j.biortech.2011.07.005
Liu, X., Zicari, S. M., Liu, G., Li, Y., & Zhang, R. (2015). Improving the bioenergy production from wheat straw with alkaline pretreatment. Biosystems Engineering, 140, 59–66. https://doi.org/10.1016/j.biosystemseng.2015.09.006
Manochio, C., Andrade, B. R., Rodriguez, R. P., & Moraes, B. S. (2017). Ethanol from biomass: A comparative overview. Renewable and Sustainable Energy Reviews, 80(June), 743–755. https://doi.org/10.1016/j.rser.2017.05.063
Montgomery LFR, Bochmann G. Pretreatment of Feedstock for Enhanced Biogas Production. 2014. Disponivel em: https://www.nachhaltigwirtschaften.at/resources/iea_pdf/reports/iea_bioenergy_task37_study_pretreatment.pdf
Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. https://doi.org/10.1016/j.rser.2013.06.033
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. https://doi.org/10.1016/j.biortech.2004.06.025
Muryanto, Triwahyuni, E., Hendarsyah, H., & Abimanyu, H. (2015). Reuse black liquor of alkali pretreatment in bioethanol production. Energy Procedia, 68, 236–243. https://doi.org/10.1016/j.egypro.2015.03.252
Ogeda, Thais Lucy, & Petri, Denise F. S. (2010). Hidrólise Enzimática de Biomassa. Quím. Nova, vol.33, n.7, pp.1549-1558. ISSN 0100-4042. http://dx.doi.org/10.1590/S0100-40422010000700023.
Oleszek M, Król A, Tys J, Matyka M, Kulik M. (2014). Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour Technol. 156:303–6. http://dx.doi.org/10.1016/j.biortech.2014.01.055.
Raposo, F., De La Rubia, M. A., Fernández-Cegrí, V., & Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews, 16(1), 861–877. https://doi.org/10.1016/j.rser.2011.09.008
Rowell, R. M., Petterson, R., Han, J. S., Rowell, J. S., & Tshabalala, M. A. (2005). Biological properties of wood. In Handbook of Wood Chemistry and Wood Composites, Second Edition. https://doi.org/10.1201/b12487
Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., & Khanal, S. K. (2015). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. In Bioresource Technology (Vol. 178). https://doi.org/10.1016/j.biortech.2014.09.103
Singh, J., Suhag, M., & Dhaka, A. (2015). Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review. Carbohydrate Polymers, 117, 624–631. https://doi.org/10.1016/j.carbpol.2014.10.012
Strömberg, S., Nistor, M., & Liu, J. (2014). Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests. Waste Management, 34(11), 1939–1948. https://doi.org/10.1016/j.wasman.2014.07.018
Sun, Ye, & Cheng, Jay J.. (2005). Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource technology. 96. 1599-606. 10.1016/j.biortech.2004.12.022.
Surendra, K. C., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846–859. https://doi.org/10.1016/j.rser.2013.12.015
Verein Deutscher Ingenieure (2006). VDI 4630: Fermentation of organic materials Characterisation of the substrate, sampling, collection of material data, fermentation tests. Düsseldorf.
Wang, W., Chen, X., Tan, X., Wang, Q., Liu, Y., He, M., … Yuan, Z. (2017). Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 228, 235–240. https://doi.org/10.1016/j.biortech.2016.12.076
Zhang, S., Keshwani, D. R., Xu, Y., & Hanna, M. A. (2012). Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Industrial Crops and Products, 37(1), 352–357. https://doi.org/10.1016/j.indcrop.2011.12.001
Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42(1), 35–53. https://doi.org/10.1016/j.pecs.2014.01.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Revista de Gestão Ambiental e Sustentabilidade
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.