A Hybrid Non-dominated Sorting Genetic Algorithm with Local Search for Portfolio Selection Problem with Cardinality Constraints

Autores

DOI:

https://doi.org/10.5585/2023.22046

Palavras-chave:

Portfolio selection problem, Cardinality constraints, Genetic algorithm, Multiobjective Optimization

Resumo

ARTIGO ACEITO

The Cardinality-Constrained Portfolio Selection Problem (CCPSP) consists of allocating resources to a limited number of assets. In its classical form, it is represented as a multi-objective problem, which considers the expected return and the assumed risk in the portfolio. This problem is one of the most relevant subjects in finance and economics nowadays. In recent years, the consideration of cardinality constraints, which limit the number of assets in the portfolio, has received increased attention from researchers, mainly due to its importance in real-world decisions. In this context, this paper proposes a new hybrid heuristic approach, based on a Non-dominated Sorting Genetic Algorithm with Local Search structures, to solve PSP with cardinality constraints, aiming to overcome the challenge of achieving efficient solutions to the problem. The results demonstrated that the proposed algorithm achieved good quality results, outperforming other methods in the literature in several classic instances.

Downloads

Não há dados estatísticos.

Biografia do Autor

Yuri Laio Teixeira Veras Silva, Universidade Federal de Campina Grande

Professor Adjunto na Unidade de Engenharia de Produção da Universidade Federal de Campina Grande. Tem experiência nas grandes áreas de Engenharia de Produção, especialmente em pesquisa operacional e simulação, gestão da produção, análise de investimentos, logística e cadeia de suprimentos, com foco na implementação de ferramentas de apoio à tomada de decisão, fundamentadas principalmente em abordagens de programação inteira mista, não-linear, modelos estocásticos, meta-heurísticas, inteligência artificial e abordagens de simulação computacional.

Nathállya Etyenne Figueira Silva, Universidade Federal da Paraíba

Professora no Centro Universitário de João Pessoa, lotada no curso de Administração. Doutoranda em Administração pelo Programa de Pós-Graduação em Administração da Universidade Federal da Paraíba. Desenvolve pesquisas principalmente nas áreas de finanças, educação financeira e responsabilidade social corporativa.

Referências

Akbay, M. A., Kalayci, C. B., & Polat, O. (2020). A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization. Knowledge-Based Systems, v.198, 105944. https://doi.org/10.1016/j.knosys.2020.105944.

Anagnostopoulos, K. P., & Mamanis, G. (2011). The mean–variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms. Expert Systems with Applications, 38(11), 14208-14217. https://doi.org/10.1016/j.eswa.2011.04.233.

Anagnostopoulos, K. P., & Mamanis, G. (2009). Finding the efficient frontier for a mixed integer portfolio choice problem using a multiobjective algorithm. Vol.1 N.2 (2009). http://dx.doi.org/10.4236/ib.2009.12013.

Armananzas, R., & Lozano, J. A. (2005). A multiobjective approach to the portfolio optimization problem. In 2005 IEEE Congress on Evolutionary Computation (Vol. 2, pp. 1388-1395). IEEE. https://doi.org/10.1109/CEC.2005.1554852.

Bacanin, N., & Tuba, M. (2014). Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/721521.

Baykasoğlu, A., Yunusoglu, M. G., & Özsoydan, F. B. (2015). A GRASP based solution approach to solve cardinality constrained portfolio optimization problems. Computers & Industrial Engineering, 90, 339-351. https://doi.org/10.1016/j.cie.2015.10.009.

Beasley, J. E. (1990). OR-Library: distributing test problems by electronic mail. Journal of the operational research society, 41(11), 1069-1072. https://doi.org/10.1057/jors.1990.166.

Chang, T. J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. https://doi.org/10.1016/S0305-0548(99)00074-X.

Cui, T., Cheng, S., & Bai, R. (2014). A combinatorial algorithm for the cardinality constrained portfolio optimization problem. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 491-498). IEEE. https://doi.org/10.1109/CEC.2014.6900357.

Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. Nonlinear analysis: Real world applications, 10(4), 2396-2406. https://doi.org/10.1016/j.nonrwa.2008.04.023.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017.

Deng, G. F., Lin, W. T., & Lo, C. C. (2012). Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Systems with Applications, 39(4), 4558-4566. https://doi.org/10.1016/j.eswa.2011.09.129.

Erfani, B., Ebrahimnejad, S., & Moosavi, A. (2020). An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial & Management Optimization, 16(4), 1801. http://dx.doi.org/10.3934/jimo.2019030.

Fernández, A., & Gómez, S. (2007). Portfolio selection using neural networks. Computers & Operations Research, 34(4), 1177-1191. https://doi.org/10.1016/j.cor.2005.06.017.

Golmakani, H. R., & Fazel, M. (2011). Constrained portfolio selection using particle swarm optimization. Expert Systems with Applications, 38(7), 8327-8335. http://dx.doi.org/10.1016%2Fj.eswa.2011.01.020.

Guo, Y., Chen, Z. R., Ruan, Y. L., & Zhang, J. (2012, October). Application of NSGA-II with local search to multi-dock cross-docking sheduling problem. In 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 779-784). IEEE. https://doi.org/10.1109/ICSMC.2012.6377822.

Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A., & Prasath, V. B. (2019). Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic approach. Information, 10(12), 390. https://doi.org/10.3390/info10120390.

Huo, J., Liu, J., & Gao, H. (2021). An nsga-ii algorithm with adaptive local search for a new double-row model solution to a multi-floor hospital facility layout problem. Applied Sciences, 11(4), 1758. https://doi.org/10.3390/app11041758.

Kalayci, C. B., Polat, O., & Akbay, M. A. (2020). An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm and Evolutionary Computation, 54, 100662. https://doi.org/10.1016/j.swevo.2020.100662.

Kalayci, C. B., Polat, O., & Akbay, M. A. (2020). An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm and Evolutionary Computation, 54, 100662. https://doi.org/10.1016/j.swevo.2020.100662.

Kartal, B. (2020). An artificial bee colony algorithm approach for cardinality constrained mean-variance model. Financial Service, 1.

Kaucic, M. (2019). Equity portfolio management with cardinality constraints and risk parity control using multi-objective particle swarm optimization. Computers & Operations Research, 109, 300-316. https://doi.org/10.1016/j.cor.2019.05.014.

Khan, A. T., Cao, X., & Li, S. (2022). Using Quadratic Interpolated Beetle Antennae Search for Higher Dimensional Portfolio Selection Under Cardinality Constraints. Computational Economics, 1-23. https://doi.org/10.1007/s10614-022-10303-0.

Khodamoradi, T., Salahi, M., & Najafi, A. R. (2021). Cardinality-constrained portfolio optimization with short selling and risk-neutral interest rate. Decisions in Economics and Finance, 44(1), 197-214. https://doi.org/10.1007/s10203-020-00293-9.

Leung, M. F., Wang, J., & Che, H. (2022). Cardinality-constrained portfolio selection via two-timescale duplex neurodynamic optimization. Neural Networks, 153, 399-410. https://doi.org/10.1016/j.neunet.2022.06.023.

Liagkouras, K., & Metaxiotis, K. (2014). A new probe guided mutation operator and its application for solving the cardinality constrained portfolio optimization problem. Expert Systems with Applications, 41(14), 6274-6290. https://doi.org/10.1016/j.eswa.2014.03.051.

Liagkouras, K., & Metaxiotis, K. (2018). A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem. Annals of Operations Research, 267(1), 281-319. https://doi.org/10.1007/s10479-016-2377-z.

Ma, H., da Silva, A. S., & Kuang, W. (2019). NSGA-II with local search for multi-objective application deployment in multi-cloud. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 2800-2807). IEEE. https://doi.org/10.1109/CEC.2019.8790006.

Markowitz, H. M. (1952). Portfolio Selection, 1959. Journal of Finance, v. 7, 77-91.

Mishra, S. K., Panda, G., & Majhi, R. (2014). A comparative performance assessment of a set of multiobjective algorithms for constrained portfolio assets selection. Swarm and Evolutionary Computation, 16, 38-51. https://doi.org/10.1016/j.swevo.2014.01.001.

Moral-Escudero, R., Ruiz-Torrubiano, R., & Suárez, A. (2006). Selection of optimal investment portfolios with cardinality constraints. In 2006 IEEE International Conference on Evolutionary Computation (pp. 2382-2388). IEEE. https://doi.org/10.1109/CEC.2006.1688603.

Nguyen, P. T. M., Passow, B. N., & Yang, Y. (2016). Improving anytime behavior for traffic signal control optimization based on NSGA-II and local search. In 2016 International Joint Conference on Neural Networks (IJCNN) (pp. 4611-4618). IEEE. https://doi.org/10.1109/IJCNN.2016.7727804.

Pai, G. V., & Michel, T. (2009). Evolutionary optimization of constrained $ k $-means clustered assets for diversification in small portfolios. IEEE Transactions on Evolutionary Computation, 13(5), 1030-1053. https://doi.org/10.1109/TEVC.2009.2014360.

Rasoulzadeh, M., Edalatpanah, S. A., Fallah, M., & Najafi, S. E. (2022). A multi-objective approach based on Markowitz and DEA cross-efficiency models for the intuitionistic fuzzy portfolio selection problem. Decision Making: Applications in Management and Engineering, 5(2), 241-259. https://doi.org/10.31181/dmame0324062022e.

Sabar, N. R., & Kendall, G. (2014). Using harmony search with multiple pitch adjustment operators for the portfolio selection problem. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 499-503). https://doi.org/10.1109/CEC.2014.6900384.

Sadigh, A. N., Mokhtari, H., Iranpoor, M., & Ghomi, S. M. T. (2012). Cardinality constrained portfolio optimization using a hybrid approach based on particle swarm optimization and hopfield neural network. Advanced Science Letters, 17(1), 11-20. https://doi.org/10.1166/asl.2012.3666.

Salahi, M., Daemi, M., Lotfi, S., & Jamalian, A. (2014). PSO and harmony search algorithms for cardinality constrained portfolio optimization problem. AMO–Advanced Modeling and Optimization, 16(3), 559-573.

Sharpe, W. F. (1989). Mean-variance analysis in portfolio choice and capital markets. The Journal of Finance n. 44 (2), 531–535. https://doi.org/10.2307/2328607.

Silva, Y. L. T., Herthel, A. B., & Subramanian, A. (2019). A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Systems with Applications, 133, 225-241. https://doi.org/10.1016/j.eswa.2019.05.018.

Skolpadungket, P., Dahal, K., & Harnpornchai, N. (2007). Portfolio optimization using multi-obj ective genetic algorithms. In 2007 IEEE Congress on Evolutionary Computation (pp. 516-523). IEEE. https://doi.org/10.1109/CEC.2007.4424514.

Strumberger, I., Tuba, E., Bacanin, N., Beko, M., & Tuba, M. (2018). Hybridized artificial bee colony algorithm for constrained portfolio optimization problem. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. https://doi.org/10.1109/CEC.2018.8477732.

Van Veldhuizen, D. A., & Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary computation, 8(2), 125-147. https://doi.org/10.1162/106365600568158.

Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. https://doi.org/10.1016/j.ejor.2011.03.030.

Xiong, J., Wang, R., Kou, G., & Xu, L. (2021). Solving Periodic Investment Portfolio Selection Problems by a Data-Assisted Multiobjective Evolutionary Approach. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2021.3108977.

Xu, R. T., Zhang, J., Liu, O., & Huang, R. Z. (2010). An estimation of distribution algorithm based portfolio selection approach. In 2010 International conference on technologies and applications of artificial intelligence (pp. 305-313). IEEE. https://doi.org/10.1109/TAAI.2010.57.

Zhao, H., Chen, Z. G., Zhan, Z. H., Kwong, S., & Zhang, J. (2021). Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem. Neurocomputing, 430, 58-70. https://doi.org/10.1016/j.neucom.2020.12.022.

Zhao, Z. Y., Liu, S. X., & Zhou, M. C. (2020). A New Bi-Objective Batch Scheduling Problem: NSGA-II-and-Local-Search-Based Memetic Algorithms. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2119-2124). IEEE. https://doi.org/10.1109/SMC42975.2020.9283072.

Zhao, Z., Liu, B., Zhang, C., & Liu, H. (2019). An improved adaptive NSGA-II with multi-population algorithm. Applied Intelligence, 49(2), 569-580. https://doi.org/10.1007/s10489-018-1263-6.

Downloads

Publicado

08.03.2023

Como Citar

Silva, Y. L. T. V., & Silva, N. E. F. (2023). A Hybrid Non-dominated Sorting Genetic Algorithm with Local Search for Portfolio Selection Problem with Cardinality Constraints. Exacta. https://doi.org/10.5585/2023.22046

Edição

Seção

Artigos