Automatic visual inspection of agricultural grains: relationships between scientific publication and grains production and consumption
DOI:
https://doi.org/10.5585/exactaep.2022.22654Keywords:
agroindustry 4.0, computer vision, automatic visual inspection, grains.Abstract
One of the technologies widely used in Industry 4.0 is computer vision. In the context of Agroindustry 4.0, this technology has enabled the implementation of computer tools for automatic inspection of visual quality of agricultural products, from planting to post-harvest stages. Visual inspection of agricultural grains in the post-harvest stage, for example, can generate competitive advantages to companies, as it allows for greater standardization of results, leading to higher quality products and, therefore, with greater added value. Scientific production on the theme “automatic visual inspection of agricultural grains” has grown a lot in the last two decades. Despite that, it is not known if the volume of scientific publications produced by the countries that stand out in this field of research has any relationship (direct or indirect) with the volume of grains produced or consumed by them. The present work provides an overview of scientific publications on the investigated topic, considering the period 2010 to 2020, as well as the production and consumption volumes of grains such as rice, beans, corn, soybeans and wheat. From this panorama, the existence of relationships between the number of published papers and the volume of grain production/consumption was investigated.
Downloads
References
Ali, M. M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2021). Quality Inspection of Food and Agricultural Products using Artificial Intelligence. Advances in Agricultural and Food Research Journal, 2(2).
Audu, J., & Aremu, A. K. (2021). Development, evaluation, and optimization of an automated device for quality detection and separation of cowpea seeds. Artificial Intelligence in Agriculture, 5, 240-251.
Araújo, S. A., Alves, W. A. L., Belan, P. A., & Anselmo, K. P. (2015). A computer vision system for automatic classification of most consumed Brazilian beans. In International Symposium on Visual Computing (pp. 45-53). Springer, Cham.
Belan, P. A., Araújo, S. A., & Santana, J. C. C. (2015). Um Sistema De Análise De Imagens Para Classificação Automática De Grãos De Feijão Brasileiro. In CILAMCE-Ibero-Latin American Congress on Computational Methods in Engineering (pp. 1-7).
Belan, P. A., Araújo, S. A., & Alves, W. A. L. (2016, July). An intelligent vision-based system applied to visual quality inspection of beans. In International Conference on Image Analysis and Recognition (pp. 801-809). Springer, Cham.
Belan, P. A., de Macedo, R. A. G., Alves, W. A. L., Santana, J. C. C., & Araújo, S. A. (2020). Machine vision system for quality inspection of beans. The International Journal of Advanced Manufacturing Technology, 111(11), 3421-3435.
Brosnan, T., & Sun, D. W. (2004). Improving quality inspection of food products by computer vision––a review. Journal of food engineering, 61(1), 3-16.
Embrapa. Manual De Classificação Do Feijão, Instrução Normativa N° 12,de 28 de março de 2008. Disponível em: http://www.felgran.com.br/images/Classificaçao_Feijao_Embrapa .pdf Acesso em: 03 abr 2022.
Chaugule, A. (2021). Survey of Seed Classification techniques. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(13), 1236-1260.
Gonzalez, R. C., & Woods, R. E. (2000). Processamento de imagens digitais. Editora Blucher.
Kılıç, K., Boyacı, I. H., Köksel, H., & Küsmenoğlu, İ. (2007). A classification system for beans using computer vision system and artificial neural networks. Journal of Food Engineering, 78(3), 897-904.
Macedo, R. A., Belan, P. A., & Araújo, S. A. An Embedded Computer Vision System for Beans Quality Inspection. International Journal of Computer Applications, 975, 8887.
MAPA Ministério da Agricultura, Pecuária e Abastecimento. Cadastro Geral da Classificação < https://www.agas.com.br/ArtigosNoticias/Arquivos/oficio%20mapa%200921.html> Acesso em 07 jul. 2019.
Massruhá, S. M. F. S., & Leite, M. D. A. (2017). Agro 4.0-rumo à agricultura digital. In Embrapa Informática Agropecuária-Artigo em anais de congresso (ALICE). In: MAGNONI JÚNIOR, L.; STEVENS, D.; SILVA, WTL DA; VALE, JMF DO; PURINI, SR DE M.; MAGNONI, M. DA GM;
SEBASTIÃO, E.; BRANCO JÚNIOR, G.; ADORNO FILHO, EF; FIGUEIREDO, W. DOS S.; SEBASTIÃO, I.(Org.). JC na Escola Ciência, Tecnologia e
Sociedade: mobilizar o conhecimento para alimentar o Brasil. 2. ed. São Paulo: Centro Paula Souza, 2017.
Patil, N. K., Yadahalli, R. M., & Pujari, J. (2011). Comparison between HSV and YCbCr color model color-texture based classification of the food grains. International Journal of Computer Applications, 34(4), 51-57.
Pesante-Santana, J. A., & Woldstad, J. C. (2000). Quality inspection task in modern manufacturing. In: International Encyclopedia of Ergonomics, W. Karwowski (ed), Taylor and Francis, London.
Pires, A. C., Santana, J. C. C., Pessota, J. H., & Araújo, S. A. (2013). Implementation of a prototype for automatic beans selection. In: Proceedings of XIX International Conference on Industrial Engineering and Operations Management, v. 1. p. 1-8.
Santos, A., Mangini, E. R., Urdan, A. T., & Rossini, F. H. B. (2017). Avaliação bibliométrica em inovação em serviços. Perspectivas em Gestão & Conhecimento, 7(1), 212-231.
SENAR Serviço Nacional de Aprendizagem Rural Coleção SENAR 178 Grãos: classificação de soja e milho, Disponível em: https://www.cnabrasil.org.br/assets/arquivos/178-GR%C3%83OS.pdf > Acesso em 03 abr. 2022.
Sott, M. K., Nascimento, L. D. S., Foguesatto, C. R., Furstenau, L. B., Faccin, K., Zawislak, P. A., ... & Bragazzi, N. L. (2021). A bibliometric network analysis of recent publications on digital agriculture to depict strategic themes and evolution structure. Sensors, 21(23), 7889.
Xing, L., Wang, Y., Luo, R., & Zou, L. (2021, May). Application of computer vision technology in agricultural products and food inspection. In Journal of Physics: Conference Series (Vol. 1915, No. 3, p. 032045). IOP Publishing
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Robson Ap. Gomes, Eli Veiga Júnior, Sidnei Alves de Araújo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Abstract 295
- pdf (Português (Brasil)) 21