Business Intelligence + Lean Manufacturing: uma revisão sistemática da literatura (2008-2018)
DOI:
https://doi.org/10.5585/exactaep.v19n1.11356Palavras-chave:
Business Intelligence, Lean Manufacturing, Tomada de decisão, Revisão sistemáticaResumo
Lean Manufacturing (LM) é uma filosofia de gestão apoiada por um grupo de técnicas que, quando combinadas e amadurecidas, reduzem o tempo e o custo de produção, maximizam o valor ao cliente e minimiza desperdícios. Para isto a tomada de decisão desempenha um papel fundamental e se torna um ponto crítico para esta filosofia de gestão. A ferramenta Business Intelligence (BI) fornece uma abordagem baseada em dados para vincular as metas estratégicas das empresas às políticas gerenciais e ações operacionais, podendo ser de ajuda para as empresas enxutas. Assim, o presente estudo pretende analisar as principais aplicações das ferramentas de BI para dar suporte à tomada de decisão às empresas que aplicam LM. Com apoio do software de revisão sistemática StArt, foi feita uma análise da literatura atual relacionada ao tema de pesquisa. A análise permitiu definir oportunidades de aplicação de BI nas empresas que, de alguma forma, utilizam o LM.
Downloads
Referências
Achanga, P., Shehab, E., Roy, R. & Nelder, G. (2012) A fuzzy-logic advisory system for lean manufacturing within SMEs, International Journal of Computer Integrated Manufacturing, 25(9), pp. 839–852.
Ahmed, S., Freire, S., Feitosa, T., Zardo, L. &Almeida, R. (2018) AD-SISCOLO: a decision-support tool to aid the management of a cervical cancer screening program, Research on Biomedical Engineering, 34(1), pp. 19–30.
Bajo, J., Borrajo, M. L., De Paz, J. F., Corchado, J. M. & Pellicer, M. A. (2012) A multi-agent system for web-based risk management in small and medium business, Expert Systems with Applications. Elsevier Ltd, 39(8), pp. 6921–6931.
Brichni, M. Dupuy-Chessa, S., Gzara, L., Mandran, N. & Jeannet, C. (2017) BI4BI: A continuous evaluation system for Business Intelligence systems, Expert Systems with Applications. Elsevier Ltd, 76, pp. 97–112.
Chen, H., Chiang, R. H. & Storey, V. C. (2012) Business intelligence and analytics:from big data to big impact.Mis Quarterly, 36(4), 1165-1188.
Chung, W. & Tseng, T. L. (2012) Discovering business intelligence from online product reviews: A rule-induction framework, Expert Systems with Applications. Elsevier Ltd, 39(15), pp. 11870–11879.
Deif, A. M. & Elmaraghy, H. (2014) Cost performance dynamics in lean production leveling, Journal of Manufacturing Systems. The Society of Manufacturing Engineers, 33(4), pp. 613–623.
Escodeiro, J. R. & Pereira, N. A. (2009) Desenvolvimento De Indicadores Da Manufatura Enxuta Utilizando Ferramentas De Business Intelligence: Uma Aplicação Na Manufatura De Calçados, UFSCar - Universidade Federão de São Carlos, p. 162.
Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Di Thommazo, A. &Belgamo, A. (2016) Improvements in the StArt tool to better support the systematic review process, Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering - EASE ’16, pp. 1–5.
Ghazanfari, M., Jafari, M. & Rouhani, S. (2011) A tool to evaluate the business intelligence of enterprise systems, Scientia Iranica. Elsevier B.V., 18(6), pp. 1579–1590.
Ghosh, B., & Scott, J. E. (2011). Antecedents and catalysts for developing a healthcareanalytic capability.Communications of the Association for Information Systems,29(1), 395-409.
Haque, W., Derksen, B. A., Calado, D., & Foster, L. (2015). Using business intelligencefor efficient inter-facility patient transfer.Stud Health Technol Inform, 208,170 -176.
Kao, H. Y.,Yu, M., Masud, M., Wu, W., Chen, L. & Wu, Y. (2016) Design and evaluation of hospital-based business intelligence system (HBIS): A foundation for design science research methodology, Computers in Human Behavior. Elsevier Ltd, 62, pp. 495–505.
Kitchenham, B. & Charters, S. 2007. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Technical Report. Keele University and University of Durham, version 2.3.
Mathrani, S. & Mathrani, A. (2013) ‘Utilizing enterprise systems for managing enterprise risks’, Computers in Industry. Elsevier B.V., 64(4), pp. 476–483.
Miniati, R., Frosini, F., & Dori, F. (2016). Integrated Risk and Quality Management in Hospital Systems. Clinical Engineering, 117–130.
Murray D. (2010) ' Intranets: Web-enabled data warehousing', The CRC Handbook of Modern Telecommunications.
Negash, S. (2004). Business intelligence.Communications of the Association for In-formation Systems, 13(1), 177e195.
Pereira, M. G. & Galvão, T. F. (2014) ‘Etapas de busca e seleção de artigos em revisões sistemáticas da literatura’, Epidemiologia e Serviços de Saúde, 23(2), pp. 369–371.
Pullan, T. T., Bhasi, M. & Madhu, G. (2013) ‘Decision support tool for lean product and process development’, Production Planning and Control, 24(6), pp. 449–464.
Shollo, A., & Galliers, R. D. (2015). Towards an understanding of the role of businessintelligence systems in organisational knowing.Information Systems Journal.
Taddeo, R., Simboli, A., Di Vincenzo, F. & Ioppolo, G. (2019) ‘A bibliometric and network analysis of Lean and Clean(er) production research (1990/2017)’, Science of the Total Environment. Elsevier B.V., 653, pp. 765–775.
Telhada, J., Dias, A. C., Sampaio, P., Pereira, G., & Carvalho, M. S. (2013). An Integrated Simulation and Business Intelligence Framework for Designing and Planning Demand Responsive Transport Systems. Computational Logistics, 98–112.
Tremblay, M. C., Hevner, A. R. & Berndt, D. J. (2012) ‘Design of an information volatility measure for health care decision making’, Decision Support Systems. Elsevier B.V., 52(2), pp. 331–341. oi: 10.1016/j.dss.2011.08.009.
Vallurupalli, V. & Bose, I. (2018) ‘Business intelligence for performance measurement: A case based analysis’, Decision Support Systems. Elsevier, 111(May), pp. 72–85.
Wan, H. & Chen, F. F. (2009) ‘Decision support for lean practitioners: A web-based adaptive assessment approach’, Computers in Industry, 60(4), pp. 277–283.
Wang, C. H. (2016) ‘A novel approach to conduct the importance-satisfaction analysis for acquiring typical user groups in business-intelligence systems’, Computers in Human Behavior. Elsevier Ltd, 54, pp. 673–681.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Exacta
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.